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Abstract

In this paper we review 30 years of developments and applications of the variable
projection method for solving separable nonlinear least-squares problems.
These are problems for which the model function is a linear combination of
nonlinear functions. Taking advantage of this special structure, the method
of variable projections eliminates the linear variables obtaining a somewhat
more complicated function that involves only the nonlinear parameters. This
procedure not only reduces the dimension of the parameter space but also results
in a better-conditioned problem. The same optimization method applied to the
original and reduced problems will always converge faster for the latter. We
present first a historical account of the basic theoretical work and its various
computer implementations, and then report on a variety of applications from
electrical engineering, medical and biological imaging, chemistry, robotics,
vision, and environmental sciences. An extensive bibliography is included.
The method is particularly well suited for solving real and complex exponential
model fitting problems, which are pervasive in their applications and are
notoriously hard to solve.

I. Introduction and historical background
1. Introduction

We consider in this paper nonlinear data fitting problems which have as their underlying model
a linear combination of nonlinear functions. More generally, one can also consider that there
are two sets of unknown parameters, where one set is dependent on the other and can be
explicitly eliminated. Models of this type are very common and we will show a variety of
applications in different fields. Inasmuch as many inverse problems can be viewed as nonlinear
data fitting problems, this material will be of interest to a wide cross-section of researchers and
practitioners in parameter, material or system identification, signal analysis, the analysis of

0266-5611/03/020001+26$30.00  © 2003 IOP Publishing Ltd  Printed in the UK R1


http://stacks.iop.org/IP/19/R1

R2 Topical Review

spectral data, medical and biological imaging, neural networks, robotics, telecommunications,
and model order reduction, to name but a few.

The authors published in April 1973 the paper [45] on ‘The differentiation of
pseudoinverses and separable nonlinear least squares’. This was work initiated in 1971,
motivated by and generalizing earlier work of Guttman et al [49], which in turn elaborated
on and generalized work in Hugo Scolnik’s Doctoral Thesis produced at the University of
Zurich [112, 113].

Scolnik’s original work dealt with the case in which the nonlinear functions depended
on one variable each and were of exponential type (7). In [49] this was extended to general
functions of one variable, while in [45] functions of several variables were considered. In this
last paper the authors also developed a differential calculus for projectors and pseudoinverses,
and proved that the separation-of-variables approach led to the same solution set as that of the
original problem. Then Ruhe and Wedin [101] extended these ideas to the more general case
of two arbitrary sets of variables.

The separability aspect comes from the idea of eliminating the linear variables (i.e., either
the coefficients in the linear combinations or one set of the nonlinear variables), and then
minimizing the resulting variable projection (VP) functional that depends only on the
remaining variables.

Improvements in the algorithm, most especially a simplification due to Kaufman [57],
extended by Ruhe and Wedin [101] to the general nonlinear case, made the cost per iteration
for the reduced functional comparable to that for the full functional, as proven by the complexity
analysis of Ruhe and Wedin.

At first it was thought that the main benefit of the elimination of one set of parameters was
that fewer variables needed to be estimated. Numerical experience showed, however, that in
most cases the reduced problem converged in fewer iterations than if the same minimization
algorithm were used for the full functional. This was later substantiated theoretically for the
Gauss—Newton (GN) method by the work of Ruhe and Wedin [101], where the asymptotic
rates of convergence for the Golub—Pereyra (GP), the Kaufman variant, the NIPALS algorithm,
and the unreduced functional are compared by studying the eigenvalues of the corresponding
fixed point iteration functions.

Since the reduced functional was more complicated, this reduction in the number of
iterations did not guarantee that the total computing time was smaller, but there were classes
of problems for which the reduction was dramatic, and in fact, it was clearly beneficial to use
the VP formulation. Exponential fitting was one such problem. See for instance [45, 102].

The main contributions of the GP paper were to give a clean, matrix-based formulation of
the problem, a differential calculus for matrix functions, orthogonal projectors, and generalized
inverses, and a modern (for the early 1970s) and detailed algorithm for dealing with the
complexities arising from the VP formulation, that included an early efficient implementation
of an adaptive Levenberg—Marquardt (LM) algorithm. They also showed that the reduced
problem had the same minima as the original one, provided that the linear parameters were
recovered by solving an appropriate linear least-squares problem.

We believe that an important part of the impact of this work has come from the fact that a
usable, public computer implementation of the algorithm was made available. The 1973 paper
is evenly divided between theoretical derivation and implementation details. In a Stanford
report with the same name [44], we included a listing of the program VARPRO that actually
implemented the VP algorithm and produced the numerical results in the paper. Variants of
this original code are still in use in some of the applications that we mention below.

The purpose of this paper is to take the story from where we left it after our second paper
in 1976 [46], which already contains details on a number of related contributions, mostly
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clustered around the early 1970s. In fact, what we want to stress here is the surprising richness
of applications of this idea and its impact in a number of very different fields, with lively
developments carrying over to this century.

Thus, we will classify the applications that we have collected through the years roughly
by field, giving a more detailed description of the basic problem solved for some selected
items and pointing out whatever new insights of general value have been discovered. We hope
that this strategy will help different practitioners find clustered the material of most interest to
them, while also calling their attention to possible cross-pollination.

We do not attempt to be comprehensive, and we refer the reader to the excellent
bibliographies of many of the quoted papers for connected contributions. The selection is
more by expediency than by any attempt to single out some contributions and slight others.

Some interesting trends are observed: during the first few years most of the contributions
relate to enhancements, modifications, theoretical results, and comparisons. Some of the early
applications occur in the area of signal localization, which is still one of the most active fields
today. This is not totally surprising given the recent explosion in new telecommunication
and mobile applications. Another very active field is that of the modelling and interpretation
of nuclear magnetic resonance data, where VARPRO has a stellar position. A more recent
interesting field of application is that of neural network training.

We will use repeatedly some acronyms that we define here for further reference: LLS,
linear least squares; NLLS, nonlinear least squares; SNLLS, separable nonlinear least squares;
VP, variable projection; SVD, singular value decomposition.

2. Separable nonlinear least squares and the variable projection method

Given a set of observations {y;}, a separable nonlinear least-squares problem is defined in [45]
as one for which the model is a linear combination of nonlinear functions that can depend on
multiple parameters, and for which the ith component of the residual vector is written as
n
ri(a, @) = y; — Zajq)j(a; t).
J=l

Here the #; are independent variables associated with the observations y;, while the a; and
the k-dimensional vector « are the parameters to be determined by minimizing the functional
lr(a, o) ||§, where the components of r(a, o) are r;(a, ), and || - ||, stands for the [, vector
norm. We can write this functional using matrix notation as

(@, )3 = ly — ®(all3,

where the columns of the matrix ®(a) correspond to the nonlinear functions ¢;(c; t;) of the
k parameters « evaluated at all the ¢;-values, and the vectors a and y represent the linear
parameters and the observations respectively.

Now it is easy to see that if we knew the nonlinear parameters «, then the linear parameters
a could be obtained by solving the linear least-squares problem:

a= o)y, (D

which stands for the minimum-norm solution of the linear least-squares problem for fixed c,
where ®(a)* is the Moore—Penrose generalized inverse of ®(«). On replacing this a in the
original functional, the minimization problem takes the form

min 17 — ®(c)®(@))y 3, @

where the linear parameters have been eliminated.
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We define r; (o) = (I — ®(ax)®(x)™)y, which will be called the VP of y. Its name stems
from the fact that the matrix in parentheses is the projector on the orthogonal complement of
the column space of ®(«), which we will denote in what follows by Pé;(a). We will also refer

to % |72 (cx) ||% as the VP functional.

This is a more powerful paradigm than the simple idea of alternating between minimization
of the two sets of variables (such as the NIPALS algorithm of Wold and Lyttkens [139]), which
can be proven theoretically and practically not to result, in general, in the same enhanced
performance.

In summary, the VP algorithm consists of first minimizing (2) and then using the optimal
value obtained for ax to solve for a in (1). One obvious advantage is that the iterative nonlinear
algorithm used to solve the first minimization problem works in a reduced space and, in
particular, fewer initial guesses are necessary. However, the main payoff of this algorithm is
the fact that it always converges in fewer iterations than the minimization of the full functional,
including convergence when the same minimization algorithm for the full functional diverges
(see for instance [64]), i.e., the minima for the reduced functional are better defined than those
for the full one.

We demonstrated also that the set of stationary points of the original and reduced
functionals are the same. This theorem has been reassuring to many practitioners and has
been used to derive other theoretical results in similar situations.

A different reason for using the reduced functional is seen by observing from the above
results that the linear parameters are determined by the nonlinear ones, and therefore the
full problem must become increasingly ill-conditioned as (and if) it converges to the optimal
parameters. That is probably one of the reasons that the important and prevalent problem of
real or complex exponential fitting is so hard to solve directly. See for instance [117] for a
theoretical discussion of this issue and an interesting application to the training of nonlinear
neural networks. Further comments on the basic results can also be found in the textbooks of
Seber and Wild [114] and Bjorck [14].

3. Numerical methods for nonlinear least-squares problems

General numerical optimization methods can be used to solve NLLS problems, but it pays to
take into consideration the special form of the goal functional (a sum of squares), just as it
pays to take advantage of the special form of separable problems. We review briefly some of
the basic concepts that lead to the main numerical methods used today in standard and SNLLS
problems.

We assume in what follows that the model functions, ¢;(a; 1), are twice differentiable
with respect to . A fundamental quantity for any optimization method for NLLS that uses
derivatives is the Jacobian matrix J(«) of the vector of residuals: 7, («). This appears when
calculating the gradient of the VP functional

Vilr(a)l3 = I (@)r (e,

while its Hessian is given by

V2 3lIra ()3 = T (@) I (@) + D rai(a) Vrai ().
i=1
The Gauss—Newton (GN) method for nonlinear least squares can be viewed as a quasi-Newton
method in which the Hessian is approximated by J ' () J (cv), while the Levenberg—Marquardt
(LM) enhancement adds a positive definite matrix and a coefficient A in order to combat
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ill-conditioning. GN is very effective for small-residual problems, since in that case the
neglected term is unimportant.

By using a trust-region strategy for step control, needed to stabilize the plain GN and LM
iterations and making them more globally convergent, one obtains Moré’s implementation [76].
See also [93] for an early proof of convergence of the GN algorithm, [90] for an early proof
of convergence for LM, and the GP paper for a detailed implementation of an adaptive LM
method for SNLLS problems.

In [91], Pereyra also describes a detailed implementation of an SVD-based trust-region
LM algorithm for NLLS problems that appear in large-scale seismic inversion tasks. These
are notoriously ill-conditioned problems and often outright singular. It would be worthwhile
to consider such an algorithm for the regularization of ill-conditioned SNLLS problems.

Instead of describing the implementation in the GP paper we go directly to that of
Kaufman [57], as described in Gay and Kaufman [41]. In this discussion we omit the
a-dependence in all the matrices in order to lighten the notation. They first observe that
GP have proven that the full Moore—Penrose pseudoinverse is not necessary to represent the
orthogonal projector, and that a symmetric generalized inverse @~ satisfying only @&~ ® = &
and (#®~)T = ®®~ suffices. Thus, the jth column of the Jacobian J can be written as

Ji= Pla@qf + PLM’@* '
E ‘I’aaj ‘I’aa‘,- v

Kaufman’s simplification for the VP functional consists in approximating the Hessian in
the GN method by using only the first term in the Jacobian formula: L = —(Pé%_@*)y,
thus saving in the numerical linear algebra involved at the cost of marginally more function and
gradient evaluations. It has been extensively demonstrated, as we indicate below, that savings
of up to 25% are achieved by this simplification, making the VPK method as cost efficient per
iteration as working with the full functional.

Kaufman’s argument to justify the small impact of her simplification is that if one writes

J =K +L,where K.; = —(P¢ 22&)", then:
J

J IJI=K'K+L'L+K'L+KL"=K'K+L"L,
since K lies in the null space of ®T, while L lies in the range of ®, so only the term LT Ly (c)
is being dropped from the exact Hessian.

We point to the reference above for the linear algebra aspects involved in the Kaufman
simplification, which combine to produce the quoted 25% reduction in time per iteration.

4. Variations and related algorithms

Bates and Lindstrom [7] give an interesting statistical interpretation of both the GP and the
Kaufman algorithms. After some analysis and numerical comparisons they conclude that these
algorithms are very attractive and provide greater stability than methods for the full functional,
besides reducing the dimensionality of the optimization problem.

Later, Ruhe and Wedin [101] demonstrated the asymptotic convergence properties of the
two methods, confirming the experimental results that GN always converges in fewer iterations
for the reduced functional than for the full one. They also extended VP to more general
separable problems, where the set of variables splits into two, and where, presumably, one of
the sets can be easily eliminated. They showed that VP, with the Kaufman simplification, had
the same cost per iteration as the full functional approach.

Golub and LeVeque [43] extended VP to problems with multiple right-hand sides. See
also [59].
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Bockmann [10] has considered regularization through a trust-region algorithm combined
with separation of variables and has obtained excellent results in comparison with state-of-the-
art solvers applied to the unreduced problem.

In a recent MSc Thesis from Dalhousie University (advisor Patrick Keast), Lukeman
[72] extends the application of the Shen—Ypma algorithm [115] to overdetermined systems,
establishing the connection with the GP approach, and he gives a very lucid and accurate
description of the early developments. See also [78].

Osborne and collaborators [85, 86] have studied through the years Prony’s method, another
reduction technique valid for the exponential fitting problem, and they have derived variations
that make it more stable.

5. Constrained problems

Kaufman and Pereyra [58] extended VP to problems with separable equality constraints of the
form

H(a)a = g(a).

They show how to reduce this to an unconstrained problem that can be solved by a standard
SNLLS solver, such as VARPRO. They also go on to develop a more efficient algorithm that
takes into account the special structure of this problem. See also [27] for further refinements.

Parks [87] considered the basic theory for separable nonlinear programming problems in
the spirit of Ruhe and Wedin, that she called reducible. Then she went on to consider specific
special cases, including the one corresponding to the equality constrained problem studied by
Kaufman and Pereyra, that she called semilinear.

More recently, Conn et al [25] elaborated on this idea in the context of trust-region
algorithms for general nonlinear programming problems, where a subset of variables occur in
some predictable functional form that can be used to optimize them more economically.

6. Various implementations

The VARPRO program [44] was written by Pereyra. At Stanford University, John Bolstad
streamlined the code and improved the documentation of VARPRO under the guidance of
Gene Golub. He also included the Kaufman simplification and the calculation and output of
the covariance matrix, a very important addition that is frequently missing in least-squares
codes written by numerical analysts. Another graduate student at Stanford, Randy LeVeque,
wrote a modified version based on the original VARPRO code called VARP2 which extends
the original code to problems with multiple right-hand sides.

Both VARPRO and VARP2 have been publicly available for a long time in netlib, on
the port library compiled by David Gay [40]. There one can also find versions of the
Gay and Kaufman implementation for unconstrained (nsf.f) and bound-constrained SNLLS
problems, which include the option of using finite differences to approximate the derivatives.
A FORTRAN 90 version of VARPRO can be found in Alan Miller’s repository [75].

Sagara and Fukushima [106] use parameter continuation to solve SNLLS problems and
report reasonable success in increasing the domain of convergence for certain complicated
exponential-polynomial fitting problems.

An advocate of VARPRO, Bert Rust, brought the code early on to Oak Ridge National
Laboratory and the National Bureau of Standards (NBS, now known as NIST (National Institute
of Standards and Technology)), where it has been used through the years in many applications,
some of which we mention below. Rall and Funderlic [97] wrote an interactive front end at
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Oak Ridge National Laboratory, INVAR, to facilitate the use of VARPRO and to add more
statistics. They also added a finite-difference evaluation of the derivatives as an option. Later
this code was improved at NBS, including graphical output [140], and it is still in use at NIST.

Another group of scientists who adopted VARPRO were those involved in analysing in
vivo magnetic resonance spectra (MRS); this line of research began with the work of van der
Veen et al [130] at Delft University in The Netherlands.

A version of VARPRO can be found in Magnetic Resonance User Interface (MRUI) [81],
a widely used system for MR imaging maintained by the Universidad Auténoma de Barcelona,
Spain (a version in MATLAB [82] is also available). This is mostly a non-profit effort financed
through grants of the European Union under the project on advanced signal processing for
medical magnetic resonance imaging and spectroscopy (TMR-CT970160). More than 300
research groups in 40 countries have licensed MRUI.

7. Performance and comparisons

In the original paper we showed the main performance characteristics of the VP method
in several problems involving exponentials, Gaussians, and a rational model for fitting iron
Mossbauer spectra, as compared to using the full functional. Four different methods were
considered: PRAXIS, a general optimization code that does not use derivatives produced by
Richard Brent [17], a GN method with step control, a Marquardt-type code with adaptive
choice of the regularization parameter that we developed, and a variable metric code produced
by M Osborne.

The conclusions were in line with what was known at the time and they are still valid
today: GN was fastest when it worked, requiring a good initial estimate, while the variable
metric code was not competitive. Brent’s code is recommended if analytical derivatives are
a problem, but otherwise it usually requires more function evaluations. Since the cost per
iteration was higher for the VP functional, reduction in the number of iterations alone was not
a guarantee of less computer time, as shown in some of the examples. Again, these results
were dependent on the method used, and for the same problems with the same initial values
and final error we obtained different comparative performances for different methods. In these
examples, the VP approach consistently required fewer iterations, including problems in which
it converged while the iteration for the full functional diverged.

For the exponential fitting problem, the VP approach was consistently faster, and the results
for GN and Marquardt were comparable and best by far. Since the Kaufman simplification
would give an additional 25% edge to the VP method, we see that by adjusting the computer
times accordingly in [45], in all cases considered the time performance of VPK is better than
that corresponding to the minimization of the full functional. As mentioned above, this has
also been confirmed theoretically in the paper by Ruhe and Wedin.

That is to say, when VP is combined with the Kaufman modification, the costs per iteration
for the full and reduced functionals are similar, debunking the original notion that the VP
functional was considerably more complicated and therefore more expensive to calculate than
the original one.

Krogh [64], Kaufman [57], Corradi [26], Gay and Kaufman [41], and Nielsen [84], among
others, had similar experiences. The most comprehensive independent studies are those of
Corradi who also considered problems with noise, and Gay and Kaufman, who were concerned
with proving that the Kaufman modification did not alter the robustness or number of iterations
necessary. Unfortunately Corradi does not report computer times.

See also the section on medical and biological applications for a discussion of some
detailed comparisons within magnetic resonance spectroscopy applications.
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II. Applications
8. Applications to numerical analysis, mathematics and optimization

One of the uses of the derivative of projectors and generalized inverses, as indicated in [45, 131],
is in the study of sensitivity to errors in solving linear least-squares problems. For instance,
the usual perturbation analysis can be extended to the rank-deficient case (for rank-preserving
perturbations): if A(e) = A+ ¢B and ||A| = ||B]| =1, we can estimate the error in the
least-squares solution of A(e)x(e) = b, for small €.

By using a Taylor expansion,

A*(€)—A*(0) = e DA*(0)B + O(ed),

and the formula from [45] for the Fréchet derivative of the generalized inverse with respect
to €,

DA*(0) = —-A"BA"+ A*A""B"P+ + QBTA'T A",
where @ stands for the projector on the orthogonal complement of the row space of A and
we have used the fact that D A(0) = B, we obtain the classical estimate,

lz(e) — z(0)| < 2¢| A*[[[z(0)[| + €| A*|I*[|7]| + O(e?),

where r = b — Awx is the residual vector. Additional perturbation analyses of this kind are
considered in [33, 47, 48, 118].

Koliha [63] has extended the differentiability results of the Moore—Penrose inverse in [45]
to C*-algebras.

In [123] Trosset considers the problem of computing distances between convex sets of
positive definite matrices as a reducible programming problem in the sense of Park, and takes
good advantage of the separability of the variables.

Some of the results of [45, 46] are used by Bramley and Winnicka [16] when solving
linear inequalities and by Byers ef al [20] when looking for the nearest non-regular pencil of
matrices.

Lanzkron and Rose [67] discuss in detail approximate nonlinear elimination. This is the
problem of solving large-scale, sparse, nonlinear algebraic equations by a nonlinear Gauss—
Seidel method. So, basically there is an external Gauss—Seidel iteration and an internal iterative
solver for single nonlinear equations (or systems in the block case), and the old question of
how to manage the inner iterations such that the outer iterations preserve some good properties
(see [89, section 3] for an early solution) is revisited. They also discuss the problem of slow
convergence, associated perhaps with poor scaling of certain sets of variables, and consider
the separation of those variables in order to improve the overall convergence. This is then
connected to SNLLS problems and the VP approach.

9. Applications to chemistry

The moment-singularity method for the calculation of densities of state in the vicinity of van
Hove singularities is considered by Prais et al [94, 137]. Because the asymptotic behaviour
of the modified moments is related to the singular behaviour of the density, information about
the locations and functional forms of the singularities can be determined directly from the
moments themselves. In the 1974 paper a least-squares method for calculating the locations
and exponents of the singularities is described. This NLLS problem is separable and the
authors report good success with the ‘very fast” VARPRO code, when using reasonable initial
estimates for the location of the singularities. Several numerical results and comparisons are
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reported. In the 1986 paper they refine the method and still make good use of VARPRO,
reporting that they have found this code leading to accurate determination of the singularities
when as few as 20 moments are used. Several new calculations, comparisons, and validations
are included.

Lee and Baeck [68] demonstrate, using a highly positive uranium ion as a test case, that
the exact relationship between small and large components of a Dirac spinor in relativistic
self-consistent field calculations is not fully satisfied by the kinetic balance condition, even
for a two-electron system. In order to obtain a basis set for a multiple-electron system, the
numerical atomic spinors obtained by Dirac—Hartree—Fock calculations are fitted by a given
number of Slater-type functions. This SNLLS problem is solved using VP. The calculations
for a uranium ion demonstrate the difference between the exponents for the small and large
components, giving numerical evidence that the kinetic balancing is not an exact relationship
between small and large components of spinors.

In [11], Beece et al use a VP algorithm in an exponential fitting problem associated
with the effect of viscosity on the kinetics of the photochemical cycle of bacteriorhodopsin.
Marque and Eisenstein [73] extend this work to consider pressure effects on the photocycle of
purple membrane. By considering several kinetic data sets taken at the same temperature and
pressure but with different monitoring wavelengths and an exponential model, they are able to
use VARP?2 to separate the variables and efficiently solve a problem with multiple right-hand
sides. The first to use this method in such problems was Richard Lozier [71], who motivated
the development of the VARP2 extension and became a champion in this field for many years
(we thank Randy LeVeque for this insight).

In [51], Holmstrom considers constrained SNLLS for chemical equilibrium analysis. He
uses his own implementation of a VP algorithm that can be found in the LAKE program
system [54]. See also the description of the MATLAB-based TOMLAB system in [52]. A
recent review paper with Pettersson [53] is also noteworthy. In an earlier publication with
Andersson and Ruhe [2] the use of SNLS in chemical applications is described in detail.

10. Mechanical systems

Prells and Friswell [95] consider the application of the VP method to the update of finite-
element models of mechanical systems when the forces applied to them are unknown, an
inverse problem. Thus, the forces and the model parameters are estimated from observed
values of the system response. The VP method leads to the elimination of the unknown forces
and results in an extension of the output residual method, which is frequently used to solve
such inverse problems. The method is exemplified in three applications that are discussed in
detail:

e damage detection of a multi-storey building subject to wind excitation;
e estimation of a foundation model of a rotary machine;
e model estimation of a steel beam tested by hammer excitation.

Prells and Friswell observe that the inclusion of prior knowledge (constraints) helps
stabilize some of these ill-conditioned problems, and that in general the use of VP is very
successful. They plan to incorporate better regularization techniques and to consider industrial-
scale problems in future work.

Westwick et al [135] consider the nonlinear identification of automobile dynamics when
the car is attached to a vibration test-rig. This time-dependent problem is analysed, and after
some manipulations it is recognized that in the nonlinear case a SNLLS problem has to be
solved. They use the algorithms of [117] and report excellent results in a benchmark example
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of a continuous-time simulation of the vibrations of a quarter-car model. This model consists
of two second-order linear ordinary differential equations and a nonlinear algebraic constraint
that stands for the suspension spring.

Kaufman and collaborators [59, 60] consider large-scale system identification problems
arising in the estimation of modal parameters from multiple-driver, multiple-receiver transfer
function data in the frequency domain. These transfer functions describe the vibrations of
structurally complex objects and they contain many modes. By judiciously applying the
VP reduction they are able to make very large problems amenable to computation. This is a
separable problem with multiple right-hand sides, where the nonlinear parameters are common
but the linear ones are not, and therefore the separation of variables produces a tremendous
reduction in the dimensionality of the problem.

Similarly, Edrissi et al [32] have considered the parameter identification problem
associated with linear, time-invariant state-space models by using separation of variables.
They cite as the main advantages better conditioning and performance than if the full functional
approach is used. Similar results are obtained by Bruls et al [18] for the linear output error
and the innovation model and Wiener system for the nonlinear case. Again they claim better
conditioning for the reduced approach and they apply it to two real industrial problems.

11. Neural networks

A very interesting and important application can be found in the training of neural networks.
Feedforward neural networks, such as multi-layer perceptrons or radial function networks, are
nonlinear parametric models, as clearly explained by Weigl e al [132-134] and as discussed in
the excellent book by Bishop [9]. In these works, some types of neural networks are conceived
as linear combinations of basis functions, for instance, sigmoids, or radial functions, with
free parameters on them in the nonlinear adaptive case. Training corresponds to fitting these
separable models in the least-squares sense by using pre-classified data (a training set) and an
optimization algorithm. Using VARPRO makes the training an order of magnitude faster than
traditional back-propagation algorithms.

This speed in the training phase allows the researcher to design rapidly the neural network
that best fits its needs. A transparent description of a simple neural network of this type is
provided by Weigl et al. Given an input node, a hidden layer made of two nodes, and an output
node, the various steps are summarized as follows.

e The input node accepts the input value x and sends it to the two hidden layer nodes, which
are sub-indexed with i.

e The hidden nodes calculate a nonlinear function g;(a;, 6;; x) = sigm(a;x + 6;), where
the function sigm(z) = # is the classic perceptron sigmoid mapping function, a; is a
scalar parameter, and 6; is a bias.

e Each hidden layer node then sends its function value to the output node, which combines

the various values linearly by multiplying them with a coefficient A; and adding them up:

fx) = ZAigi(ai, 0i; x).

Given a training set (x;, f(x;)), j =1, ..., J, we teach or train the neural network by finding
the parameters (A, a, 0) that solve

2
Lnfllne . (f(xj) - Z Aigi(ai, 0;; x‘,-)> .
J 1
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a SNLLS problem. The extension to general multi-input, multi-layer, and multi-output neural
networks is now straightforward.

As in other applications, one advantage of this approach is that the coefficients A are
computed directly, without a learning step, and thus convergence is much faster. Other basis
functions can be used instead of the sigmoids. See for instance [83] and [88]. An interesting
extension would be to consider very large networks, such as those used in VLSI design, by
using block techniques combined with separability [91].

In [34] the authors consider issues of regularization for NLLS problems that appear in
training feedforward neural networks. It is odd that these authors, who are very familiar with
the SNLLS technology, seem to have missed the above connection, at least in this contribution.
However, some fellow Swedes (Sjoberg and Viberg) have not [117] (although they do not seem
to be aware of the work of Weigl ez al).

More importantly, besides using VP to train neural networks, Sjoberg and Viberg are the
only researchers who we have seen mentioning explicitly and demonstrating the fact that, in
general, the VP functional is better conditioned than the full functional.

12. Parameter estimation and approximation

This is a rich application area. Schwetlick [110] gives a comprehensive survey, including
SNLLS. A traditional application (see [56, 109, 111]) is the fitting of data by splines with free
knots. In this problem, a data set {x;, y;} is given, where the x; are abscissae and the y; are noisy
measurements of values of an unknown smooth function f(x). One wishes to approximate
f () in the least-squares sense by a function s(x) belonging to a finite-dimensional space.
Splines provide a powerful choice for the approximation functions. They require for their
definition a knot sequence a < f; < --- < t; < --- < t, < b, where it is advisable to take
n<<m.
Thus, the approximation functions are linear combinations of basis functions,

s(x) = Zothj(x),
j=1

where the knots appear in the definition of the B-splines. See [30, 4.2] for more details.
If the knots are fixed (usually uniformly distributed), then the fitting problem,

min Z()’i - Zaij(Xt)>
P =

is a simple LLS one. However, if we consider the basis function knots as unknowns, thus
potentially leading to better approximation properties for functions with high variability in
the interval of interest, then this is a SNLLS problem, which has been successfully solved
using VP. In fact, for practical applications, constraints need to be imposed to avoid a change
in the linear ordering of the knots, but the resulting problem is still separable in the sense of
Kaufman and Pereyra. There is an unexploited connection here with unequally spaced fast
Fourier, wavelet, and Radon transforms [12].

Francos et al [37] consider the problem of estimating discrete homogeneous random fields.
Again, the separation paradigm helps significantly in solving this problem which involves
models with discrete complex exponentials.

An interesting paper that connects VP with the manipulation of tensor products [92]
is [124], where the approximation in the Frobenius norm of a rectangular matrix by a Kronecker
product is discussed.

2
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Bates and Watts [6] consider the problem of multi-response nonlinear least-squares
estimation Z(0) =Y — H(0), where the N x K matrix Y contains the N observations of K
responses, and H (0) is a nonlinear model, where the P-dimensional vector of parameters 6 is
to be estimated. For this estimation, they chose to minimize with respect to 6 the determinant
of the matrix ZTZ

m@in |ZTZ|,

where | - | stands for determinant. In order to apply standard optimization methods they derive
formulae for the derivatives of this matrix. In fact, the elements 8o, of the gradient vector of
the logarithm of the determinant

Vilog|ZM (@) Z(a)| €)

can be written as gp, = trace(Z*Z(;p) [5], and the Hessian can then be obtained from the
formulae for the differentiation of the pseudoinverse.

13. Telecommunications; electrical and electronic engineering

A number of applications of VP are related to classical and modern telecommunication
problems, many of which can be cast as SNLLS fitting problems for linear combinations of
complex exponentials, where the linear coefficients represent amplitude, while the nonlinear
ones are the phases of the signals (plane waves).

Roy and Kailath [100] describe in detail applications to practical signal processing
problems. The objective there is to estimate from measurements a set of constant (time-
independent) parameters upon which the received signal depends. Among these, high-
resolution direction-of-arrival (DOA) estimation is important in many sensor systems such
as radar, sonar, electronic surveillance, and seismic exploration. High-resolution frequency
estimation is important in numerous applications, such as the design and control of robots and
large flexible space structures. In such problems, the functional form of the underlying signals
can often be assumed (e.g., narrow-band plane waves, cisoids). The quantities to be estimated
are parameters in these functional descriptions, such as frequencies and directions of arrival
for plane waves, or cisoid frequencies.

Several approaches have been developed through the years for solving these problems,
including Capon’s [23] maximum-likelihood and Burg’s [19] maximum-entropy methods.
These methods have significant limitations and Pisarenko was one of the first to consider the
structure of the data model to estimate the parameters of cisoids in additive noise using a
covariance approach. Schmidt [108] and Bienvenu [13] were the first to exploit correctly the
measurement model in the case of a sensor array of arbitrary form. Schmidt’s algorithm,
MUSIC (MUTItiple SIgnal Classification), which according to that author was inspired by the
separation-of-variables technique, has been widely studied and was considered in an MIT study
of that time as the most promising high-resolution algorithm. However, MUSIC’s success came
at a high computational cost that involved a search in parameter space and the storage of array
calibration data.

Roy and Kailath developed a new algorithm, called ESPRIT, that dramatically reduced
the computational cost and storage for sensor arrays that show what they call displacement
invariance. These are arrays where the sensors come in matched pairs with identical
displacement vectors.

We will concentrate now on the direction-of-arrival problem for plane waves (i.e., the
sensors are in the far field of the source of energy), in an isotropic, homogeneous, and non-
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dispersive medium, so that energy propagates in straight lines. Under those assumptions, the
complex signal output of the kth sensor at time ¢ can be written as

d
z(1) =y si(Da(®),
i=1

where a(6;) = [a;(B;e 17 g, (6;e7 0™ ®))] is the array steering vector for direction
0;. Observe that this is a separable model.

Unfortunately, many of the earlier simplified algorithms are ineffective when some of the
sources are coherent. This can stem from multi-path effects or it can be introduced artificially
to impede detection. Kumaresan and Shaw [65] and Cadzow [21] have studied in detail the
application of separation of variables to this classical problem. More recently, a number of
new algorithms have been developed to consider the more challenging problem of multiple
broadband source location. A variety of least-squares modelling methods provide viable means
for overcoming the difficulties of coherent sources. As we have seen above, in the standard
LLS approach, the measured sensor signals are modelled as linear combinations of the source
steering vectors.

Cadzow [21] presents a method that models the signal eigenvectors. These are linear
combinations of the steering vectors instead of the sensor signals, which introduces a smoothing
effect and decreases the computational cost, while the use of the VP approach produces
significant additional computational savings. As Roy and Kailath [100] indicate, VP-type
algorithms were considered too expensive until fairly recently, thus justifying the use of the
simplified SVD-based ones. However, the increasing power of modern computers has rendered
some of those arguments and simplified methods obsolete, especially in low-signal-to-noise-
ratio situations, where they do not work well.

Friedlander [38] has analysed the sensitivity of the maximum-likelihood method for the
problem above. Thisis a separable problem and the sensitivity study involves the differentiation
formulae of [45]. This analysis is valuable because the fast algorithms require a knowledge
of the antenna array that is hard to come by in real situations, and thus have not been used as
often as they deserve.

Talwar et al [120, 121] have considered the problem of estimating co-channel digital
signals using an antenna array when the spatial response of the array is unknown. Traditional
techniques, such as MUSIC or ESPRIT, are dependent on the reliability of the array manifold.
In the application the authors envision (mobile communications), the array manifold is poorly
determined because of a highly variable propagation environment. They consider instead a
block SNLLS approach, which is both fast and reliable.

Rao and Arun [98] discuss the problem of estimating closely spaced frequencies of
multiple, superimposed sinusoids from noisy measurements as a NLLS problem. This
variant of the problem discussed earlier has wide applications to radio-astronomy, interference
spectroscopy, seismic data processing, and MR spectroscopy (which we discuss in detail later).
Because of the cost of the computation, as compared to the simplified methods, SNLLS is only
advisable at low signal-to-noise ratios.

Abel [1] applies separation-of-variables techniques to problems in underwater acoustic
testing and global positioning system (GPS) navigation. The GPS problem involves using
pseudo-range measures to determine a user’s position. GPS consists of a set of satellites
transmitting time-stamped signals; pseudo-ranges are formed by comparing satellite signal
arrival times according to the user clock, to their transmission times according to GPS time,
and then scaling by the propagation velocity. This can be stated as a SNLLS problem that is
solved by a VP-like algorithm.
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Zhou et al [144] consider the DOA problem for multiple moving targets by means of a
passive array of sensors, a problem of great interest in communications, air traffic control, and
tactical and strategical defence operations. In satellite and personal communication systems
it is also advantageous to deploy sensor arrays to reject undesired signals. The classical
techniques mentioned above deteriorate rapidly in the presence of moving targets, since they
provide poor resolution because of the spread array spatial spectrum caused by the target
motion. This deterioration increases with the number of sensors. Zhou et al propose a
maximum-likelihood algorithm, where the target motion is assumed to be locally linear,
which helps eliminate the spread spectrum effects and provides accurate target dynamical
state estimates. Since they use the array signal model for an array of omnidirectional sensors,
their approach leads to a separable problem that is solved by a VP method.

Liang et al [69] consider a two-stage hybrid approach for separate co-channel interference
reduction and intersymbol interference equalization in a slow Raleigh fading channel, by using
a space—time filter. This design involves an optimization problem that is recognized as a (novel)
separable problem and it is dealt with by VP techniques.

Lilleberg et al [70] from Nokia Mobile Phones consider a near—far resistant iterative
algorithm for multi-user signature sequence delay estimation. VP is used to separate the delay
and data to be estimated, obtaining a so-called blind maximum-likelihood estimator that does
not require any knowledge of user amplitudes and data.

Heredia and Arce [50] have considered the splitting of a signal into a set of multi-level
components as a SNLLS problem. They use as a comparative example a system identification
problem for wave propagation through a nonlinear multi-layer channel, where they test the
new concepts against linear, Volterra, and neural network alternatives. They show that the
realization of piecewise linear filters with unknown thresholds leads to a SNLLS problem. In
the test problem they verify that the new approach can cope with the difficulties of the problem
that trip the Volterra and neural network approaches.

Borden [15] considers the problem of obtaining accurate and high-resolution images of
complex targets from radar scattering. Simply matching templates is not adequate when the
radar images contain erroneous or surplus information. The remedy here is to try to locate
some salient features of the scattering volume. In noisy and data-limited environments, the
best that can be done is to try to locate the position and strength of scattering centres. Even that
process may be difficult in real-life situations. Borden derives a model that includes noise and
eventually reduces to a fairly complicated separable model which he solves by VP. He develops
his own implementation of the reduction and optimization using Householder transformations
and gives numerical results for some synthetic data. He concludes that this problem, previously
intractable, can now be efficiently and robustly solved by taking advantage of separability. The
method is robust against noise contamination and displays good super-resolution capabilities.
He also indicates that by using truncated SVDs one could also take care of the problem of
automatically determining the correct number of scatterers, in the case where that number is
overestimated in the model.

Baum eral [8] review the singularity expansion method (SEM) for quantifying the transient
electromagnetic scattering from targets illuminated by pulsed EM radiation. The SEM theory
suggests that the late-time scattered field of a target, interrogated by pulsed EM radiation, can
be represented as a sum of natural-resonance modes. Since the excitation-independent natural
frequencies depend upon the detailed size and shape of the target, then the full complement
of those frequencies is unique to a specified target and provides a potential basis for its
identification. The first efforts to extract such natural frequencies from measured target pulse
responses were based on Prony’s method. However, in the practical low-signal-to-noise-ratio
environment in which this inverse problem occurs, only one or a few modes could be extracted
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reliably using that inherently unstable algorithm. Although several efforts have improved the
reliability of Prony-based methods, realistic problems require a nonlinear approach, and since
the problem is separable, VP has found another good application in the radar cross-section
identification business.

Robertazzi and Schwartz [99] consider the problem of applying Kalman filters to nonlinear
regression models. Their idea is to process the data offline in a random instead of a causal
manner. They argue that the standard approach processes the data as they arrive and only
provides sub-optimal solutions. They use as an example a separable regression problem and
its solution through VP to show how bad such a sub-optimal solution can be.

In some recent publications, Escovar and Suaya [35, 36] discuss some difficult problems
that arise in the design of cutting-edge microcircuits when the clock speed runs over the 1 GHz
regime. Critical signals, such as clocks and high-speed data-buses, have lengths and transition
times comparable to the transit time of light propagation in the medium over those distances.
Optimization methods applied to the layout problem based on rigorous solution to Maxwell’s
equations in the media provide an appealing approach to the design of high-speed data lines,
which are the critical components on present-day microprocessors. At certain stages of this
work, separable nonlinear models appear and they are handled with VARPRO. Suaya [119]
also considers the role of resistance, inductance and capacitance coupling, and finds again a
good use for VARPRO.

14. Differential equations and dynamical systems

Wikstrom [138] has considered in detail the problem of parameter estimation associated with
ordinary differential equations arising in chemical kinetics, theoretical biology, and population
dynamics in ecology. She shows how some of these problems can be profitably attacked via
constrained SNLLS techniques. A MATLAB toolbox has also been developed.

The parameter estimation problem considered by Wikstrom is the following:

M
i ] Uy — ; T (11, — .
 min 3 ;(y y(ti, k) Wi — y (i, k), @

where W; are diagonal weight matrices, y; are observed vector values of the solution of the
differential equation y(¢;, k) at the times #;, G(t, y(¢)) is a matrix-valued function, and the
elements of the vector k are the parameters to be determined. By numerically integrating the
differential equations and considering the discrete system in matrix form, Wikstrém obtains
the following equality-constrained separable NLLS problem:

min 3 [W'2(g — y)|I%, (6)
y.k
s.t. yi = yo + Hi(y)k, y(t0) = Yo, (7
where H;(y) is the result of numerically integrating G(¢, y(¢)) from #; to ;.

15. Environmental sciences and time series analysis

Bert Rust and collaborators have used VARPRO in a number of applications related to
modelling time series in environmental applications [62, 103—105]. In their most recent and
most comprehensive contribution, they consider the inverse modulation of global fossil fuel
production P(¢) by variations in northern hemispheric temperatures 7'(¢#). They propose a
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number of new models using some additional data. As an example, a delay differential equation
that they propose is

dP/dt = (a = B[T (1) = T(t — 1)]/T) P,

where «, 8, and the lag parameter 7 are to be determined by fitting. The function 7'(¢) is
obtained as an optimal smoothing cubic spline fit of the temperature data provided by Jones
et al [55], where the smoothing parameter was chosen to minimize the generalized cross-
validation statistics [42]. All the fittings in the paper are done with INVAR, the interactive
version of VARPRO at NIST.

See also [61] for an application that strips a time series of its trend, which can be
a combination of polynomial, exponential, autoregressive, and sinusoidal terms. As an
illustration, a purely mathematical fit to the Mauna Loa carbon dioxide monthly averages
from 1958 to 1976 is performed. The following model is fitted using VARPRO:

y(t) = a+de* + fisin[2w /12(t + y;i)] + f> sin[27/6(t + ¥»)]
+ p1 sin[27 /71 (t + 01)] + p2 sin[27w /T2 (t + 65)]. (8)

16. Robotics and vision

In [122] Tomasi and Shi consider the problem of determining the direction of heading from
image deformations, which is important in applications to robotics and vision. They show how
to eliminate the unknown depth values by using VP. As observed earlier in other applications,
they report better-defined minima for the reduced functional, leading to a more reliable solution.
The method also degrades gracefully with increasing uncertainty.

In related work, Chiuso et al [24] consider the problem of estimating spatial properties of a
three-dimensional scene from the motion of its projection onto a two-dimensional surface, such
as the retina. They address this problem, which has been studied for more than 20 years, from
the point of view of an engineer trying to use conventional algorithms that have been tested
on controlled sequences of images and do not behave as advertised in real-life applications.
They indicate that the problem is noise and show how to handle it in a robust manner. Another
problem is the trade-off between optical flow/feature tracking, which requires image motion
of a few pixels to work well. This makes the problem of getting structure from motion very
hard, since then the average image motion is comparable with the localization error. Again,
a separation-of-variables argument allows them to simplify the solution and provides a more
robust alternative in the presence of noise.

Radke et al [96] consider the problem of estimating projective transformations associated
with standard problems in image processing and computer vision. The estimation problem
leads to the minimization of a nonlinear functional of eight parameters, which, through a
separation argument, can be reduced to a problem in only two variables.

Gardner and Milanfar [39] consider several algorithms for reconstructing convex bodies
from brightness functions. One of the algorithms results in a bound-constrained SNLLS
problem. Their current implementation uses the optimization toolbox from MATLAB, without
taking advantage of the separability, and results in an algorithm that is too slow to be used
in three dimensions. The authors conjecture that they could do much better by taking into
account the separability.

Yen and Petzold have considered in a series of papers [141-143] a coordinate-splitting
formulation of the equations of motion for multi-body systems, which is very effective when
solving certain nonlinear, highly oscillatory problems. The problem leads to an index-3
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differential-algebraic system, involving generalized coordinates g and Lagrange multipliers A:
M(@)§ — f(g,4,1) +G(@)"» =0, ©)
9(q) =0.

It is possible to eliminate the Lagrange multipliers by choosing an appropriate annihilation
matrix P(q), such that P(q)GT(q) = 0. Writing (9) in first-order form and performing some
additional manipulations yields a stabilized index-2 system. Premultiplying this system by the
matrix P(q) results in the system

P(g)(g —v) =0,
P(q)(M(q)v — f(v,q,t)) =0,
G(q)v =0,

g(q) = 0.

The results on differentiation of projectors in [45] are now combined with discretization via a
kth-order BDF formula to yield a system of nonlinear difference equations.

Dutre et al [31] discuss parallel kinematic structures encountered in the design of robotic
manipulators. They consider an analytical description of the velocity closure equations and
their Jacobian matrix, i.e., the linear mapping from driving joint velocities to end effector
velocities or twist. Since available numerical methods are always more efficient than this
analytic approach, the justification for the study is to provide more geometrical insights on the
problem. The analytic expressions of the Jacobian and higher derivatives also open up new
approaches in dynamics, acceleration analysis, calibration, and manipulability assessment of
parallel robotic manipulators. After deriving the analytical velocity closure and the dependence
matrix, the authors proceed to the calculation of the Jacobian matrix. The time derivative of
the dependence matrix requires the differentiation of a pseudoinverse and the results of [45]
are used to obtain closed analytical expressions.

(10)

17. Medical and biological imaging

Magnetic resonance (MR) in liquids and solids was discovered over 50 years ago by Ed Purcell
(Harvard) and Felix Bloch (Stanford), who shared the Nobel Prize in Physics in 1952 for their
work. MR is now a fundamental analytical tool in synthetic chemistry, plays an important role
in biomedical research [22], and it has revolutionized modern radiology and neurology. Its
applications outside the laboratory or medical clinic are as diverse as oil-well imaging, food
analysis, and the detection of explosives.

A typical MR experiment involves placing the sample under study in a strong magnetic
field, which forces the magnetic moments or spins of all the nuclei in the sample to line up
along the main applied field and precess around this direction. The spins precess at the same
frequency but with random phases. Pulses of radio-frequency (RF) magnetic fields are then
applied that disturb the spin alignments but make the phases coherent and detectable. As
this state precesses in the magnetic field, the spins emit radio-frequency radiation that can be
analysed to reveal the structural, chemical, and dynamical properties of the sample. The idea
of applying strong RF pulses is due to H C Torrey and E L Hahn. Higher and higher magnetic
fields of the order of teslas have been used in order to increase the sensitivity of the method until
just recently, when researchers in the USA and Germany showed that MR spectroscopy can
be performed with fields in the microtesla range [74], by pre-polarizing the nuclei and using a
superconducting quantum interference device (SQUID) to detect individual flux quanta. In a
magnetic field of 1.8 uT the researchers observe proton MR in a liquid sample at about 100 Hz
with an astonishing degree of sensitivity.
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In vivo MR spectroscopy has the strongest connection and owes most to the VP
methodology. In 1988, van der Veen et al [130], a group of researchers at Delft University and
Phillips Medical Systems in The Netherlands, published a very influential paper on the accurate
quantification of in vivo MRS data, using the VP method and prior knowledge (constraints).
According to one of the authors, as of August 2002 this paper had had more than 190 citations.
The problem here is to fit MR spectra in the time domain, using models whose parameters have
physical significance. An example would be a linear combination of exponentially damped
sinusoids, but other types of nonlinear function are also considered.

van der Veen et al consider MRS measurements of human calf muscle and human
brain tissue and compare the FFTs of the original data with a linear prediction and SVD
decomposition, and VARPRO with and without prior knowledge. The best results are obtained
with VARPRO plus prior knowledge, which was difficult or impossible to impose on previous
simpler approaches. They also list as desirable features the fact that starting values of the
amplitudes of the spectral components are not required and that there are no restrictions on the
form of the model functions.

Some years later, a group in Leuven, Belgium [125-127], made a comparative study for
this problem, including artificial noise and also using prior knowledge. They examined one of
the datasets considered earlier by van der Veen et al, added different levels of white Gaussian
noise: small (5%), medium (15%), and large (25%), and considered 300 runs per level in a
Monte Carlo simulation.

The model, without prior knowledge, involves 256 complex data points and 11
exponentials, for a total of 44 parameters divided equally between linear and nonlinear. In
order to obtain good initial values, the time signal was Fourier transformed and displayed.
Then, an interactive peak-picking was performed. This provided good initial values for the
frequency and the damping of each peak. When the full functional is minimized, one also needs
initial values for the linear parameters, and these are obtained by solving the LLS problem
obtained by evaluating the nonlinear part at the chosen initial values. As observed in our
original paper [45], this is much better than taking arbitrary values.

They first consider three different optimization methods for the full and the reduced
problem, using VP with the Kaufman improvement: the original VARPRO with the LM
implementation, a secant-type code NL2SOL [29],and LMDER, a modern LM implementation
from MINPACK [77]. According to their results, NL2SOL with the separated functional
seems to be the most reliable, even for large levels of noise. MINPACK’s routine is almost as
reliable and systematically faster. We should indicate here that the reported average times for
this problem are about one minute on a SUN ULTRA2 (200 MHz), so in current and future
platforms the differences in performance are negligible.

The most important conclusion drawn here is that if a VARPRO-type code is to be used,
it should include the Kaufman simplification and should take advantage of the advances
in numerical optimization. The MINPACK NLLS solver LMDER or the Gay—Kaufman
implementation are good candidates for replacement codes. This has been confirmed in [129],
where the author, in the process of developing an object-oriented system for the analysis of in
vivo MR signals, made similar comparisons and came to the conclusion that VP did not help
if used with an external NLLS code, but it was quite efficient if properly implemented within
a modern solver such as Gay and Kaufman’s NSG code.

The Vanhamme et al study continues to consider three different methods for obtaining
starting values: HSVD [66], a fully automatic parameter estimation method that combines
a state-space approach with SVDs; pick 1, the peak-picking method described above; and
pick 2, a more careful (and time-consuming) version of pick 1. Since the influence of these
different initial value choices seems to be method independent, only results for MINPACK are
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presented. The conclusions are that the desirable automatic procedure works very well for low
and medium noise levels, but not as well for high levels of noise. The procedures pick 1 and
pick 2 are similar in performance and reliability, with a slight edge for pick 2.

Finally, they consider the effect of using prior knowledge about the problem. In prior 1,
the number of linear variables is reduced to 11 by noting that all the peaks have a phase of
135°. In prior 2 all the known prior knowledge is used to eliminate variables, obtaining a
problem with 5 linear and 12 nonlinear parameters. Results are given for MINPACK only,
and here with prior 1, VP has a slight edge in performance for small and medium noise levels,
although for medium and high levels of noise there is a deterioration in the reliability. For
prior 2, VP is consistently more reliable than the full functional approach, with a slight penalty
in performance (under 8%,) which has now come down to under 10 s of CPU time.

As a conclusion to this study, the authors suggested using the full functional instead of
the reduced one and they proceeded to write their own solver AMARES to do that. This new
solver also includes some other features special to the problem that were not present in [130].
The study of van Leeuwen indicates that with the Gay and Kaufman implementation of VP,
the balance would clearly tilt in favour of the reduced functional, both in speed and reliability.

Both VARPRO and AMARES are currently offered in the MRUI system [81]. See
also [128] for a recent review article.

Recently, de Beer et al [28], in a multi-centre study (done in the context of the European
Union BIOMED 1 Concerted Action No PL 920432) with the purpose of reducing the variations
in quantitative results of the participating in vivo MR groups, worked with the same data-
analysis protocol. A central part of that protocol was the VARPRO procedure.

Sala et al [107] study respiratory rehabilitation, including lower-limb exercise training, as
part of the management for patients with chronic obstructive pulmonary disease (COPD). In
order to understand better the physiologic mechanisms underlying the beneficial consequences
of training, they made MRS measurements in the quadriceps of 13 patients with COPD and 8
healthy patients, before and during a period of exercises. Free induction decays were analysed
in the time domain using the VARPRO software, by fitting single Lorentzian functions for the
resonance frequencies and amplitudes. The individual half-time of phosphocreatine recovery
was fitted in the time domain to an exponential function. The authors then present a detailed
discussion of the physiological conclusions stemming from this study.

Barone [4] has considered the problem of fast deconvolution in the case of noisy data.
This is a general problem that occurs in many applications, such as the recovery of images
observed in noise through a linear system representing a physical measuring device. Speed
of computation is the driving factor for this study, especially when large amounts of data are
present. The problem is shown to be separable, and using a VP approach is considerably
more efficient than a previous simulated annealing method used on the full functional. Three
examples are considered, including the restoration of a MR image of a human brain that
includes Gibbs oscillations.

Mosher et al [3, 79, 80] have considered the problem of modelling the spatio-temporal
neuromagnetic field or magneto-encephalogram (MEG) produced by neural activity of the
brain. A popular model for the neural activity produced in response to a given sensory stimulus
is a set of current dipoles, where each dipole represents the primary current associated with the
combined activation of a large number of neurons located in a small volume of the brain. An
important problem in the interpretation of MEG data is the localization of these neural current
dipoles. The key concept here is that given any arbitrary static current distribution, the magnetic
field can be obtained by using the Biot—Savart law. The general model of p, rotating dipoles and
p fixed dipoles results in a problem with 37 unknown location parameters (r = 2p, + py) and
p s unknown constrained moment parameters. Using m SQUID biomagnetometers, n samples
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are collected to form a spatio-temporal data matrix F'. The problem is then
. _ 2
Jmin, |F — H(L, M)S||%,

where the model H (L, M)S involves the gain matrix H, the time series S, the moment
orientation matrix M, and || - || 7 is the Frobenius norm. This separable model is one of the most
ambitious and large-scale applications of the VP approach that we have seen to date and it is
much too complicated to discuss here. We refer the reader to the original papers for more details.

Solving this problem directly would require finding five parameters for each of p dipoles
at each point of n time snapshots, for an overall total of 5pn parameters. By considering the
separability of the problem and using the VP algorithm one can reduce the dimensionality of the
problem by factoring out the linear moments. Given the complexity of the model, these authors
recommend the use of a derivative-free approach, such as a Nelder—-Mead-type algorithm. The
case of rotating dipoles is most favourable, since there the nonlinear parameters are not time
dependent, and therefore the problem can be reduced to finding only 3 p location parameters,
while deferring the calculation of the 2 pn linear parameters, to be obtained a posteriori with
a single LLS solve. SVDs are recommended to optimize the operation count and, more
importantly, to regularize the problem in the ill-conditioned or even rank-deficient case.

Silvaeral [116] also consider realistic head models, instead of spherical ones, applied to the
neural source localization problem associated with epileptic foci from scalp EEG data. Usually,
accurate head models are constructed from MR images of the brain, skull, and scalp. Since
this is an expensive and time-consuming procedure, the authors have developed a parametrized
realistic head model that can be adjusted to a particular patient by using external distances
between anatomic landmarks. To localize the neural sources, an inverse problem, one needs
to be able to solve the direct problem of determining the scalp potentials at the electrodes,
generated by a given source. The authors use the boundary element method (BEM) as their
forward solver and the VP method for the inverse problem. Extensive validation studies are
reported, together with application to three clinical cases.

Westwick and Kearney [136] consider the identification of a Hammerstein model of
a biological system using VP. Again they cite the simplification arising from the reduced
dimensionality and indicate that this work can be extended to other commonly used model
structures, such as the Wiener cascade.

18. Conclusions and further developments

We have reviewed the ideas behind the VP method as an efficient solution to SNLLS problem:s.
We have then briefly visited a significant number of very different applications that indicate
how prevalent these problems are and how successful the method has been during the last thirty
years, including very recent results.

One of the most exciting new applications is to the training of some types of neural
network. It would be interesting to extend the method to large-scale problems, i.e., those with
too many parameters to be solved directly by a VP-type code. By their nature, those problems
will be sparse, although sparsity may be destroyed by the elimination of the linear variables.

What we have learned from the original results and the accumulated experience of a large
number of researchers in very diverse disciplines is that the VP approach is chosen not only
because it is more efficient than solving the unreduced problem, but also because it is a good
preconditioner and leads to problems with better-defined minima.

A public domain version of VARPRO with the Kaufman modification and using modern
optimization technology would also be welcome, together with one that uses a truncated SVD
approach to regularize ill-conditioned or over-parametrized models.
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Figure 1. Distribution of cited references per year.

19. Distribution of references

We show in a graph (figure 1) the distribution of cited references per year. We observe an
increase of interest in the last decade, although that observation may be tainted by the fact that
there are more items of recent vintage available on the Internet.
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