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Simultaneous inversion of full data bandwidth
by tomographic full-waveform inversion

Biondo Biondi' and Ali Almomin'

ABSTRACT

The convergence of full-waveform inversion can be im-
proved by extending the velocity model along either the sub-
surface-offset axis or the time-lag axis. The extension of the
velocity model along the time-lag axis enables us to linearly
model large time shifts caused by velocity perturbations.
This linear modeling was based on a new linearization of
the scalar wave equation in which perturbation of the ex-
tended slowness squared was convolved in time with the sec-
ond time derivative of the background wavefield. The
linearization was accurate for reflected events and transmit-
ted events. We determined that it can effectively model con-
ventional reflection data as well as modern long-offset data
containing diving waves. It also enabled the simultaneous
inversion of reflections and diving waves, even when the
starting velocity model was far from being accurate. We
solved the optimization problem related to the inversion with
a nested algorithm. The inner iterations were based on the
proposed linearization and on a mixing of scales between the
short- and long-wavelength components of the velocity
model. Numerical tests performed on synthetic data mod-
eled on the Marmousi model and on the “Caspian Sea” por-
tion of the well-known BP model demonstrated the global-
convergence properties as well as the high-resolution poten-
tial of the proposed method.

INTRODUCTION

Conventional seismic imaging relies on a separation of scales be-
tween the migration velocity model (long-wavelength components)
and the reflectivity (short-wavelength components). Figure 1 shows
a simplified 1D graphical representation of the separation of scales
concept. The black line represents the two disjointed wavelength

ranges (mapped into corresponding temporal-frequency bands)
and the consequent gap in information between long and short
wavelengths. This conceptual understanding naturally leads to a se-
quential approach for seismic imaging; the velocity model is esti-
mated first, and then it is used as input to migration for imaging
reflectivity. In current velocity-estimation practice, reflectivity is
used only indirectly to measure the focusing power of the velocity
model. The only important exceptions occur when migrated vol-
umes are used to interpret boundaries of geobodies (e.g., salt
bodies) and to estimate predominant dips in the geologic layering
that are then used to constraint a tomographic velocity update.

The sequential imaging process is slowly being undermined by
three long-standing trends in the industry: (1) acquisition of lower-
frequency data, (2) imaging under a complex overburden that
requires higher resolution velocity models to focus and correctly
position reflectors, and (3) acquisition of longer offset data. As
the industry strives to widen the data frequency band at the low
and high ends, the reflectivity band is extended at the low end,
as graphically represented by the green line in Figure 1. The high
end of the velocity band is also pushed upward (blue line in
Figure 1) by the application of sophisticated tomographic methods
that enable the estimation of the high-resolution velocity models
needed to focus reflectors located under complex overburden. How-
ever, tomography (either ray- or wave-equation-based) is a more
challenging task than migration, and thus it often falls short of pro-
viding the accuracy and resolution necessary to satisfactorily image
the high frequencies in the data. The acquisition of longer offset
data enables the recording of diving waves and refracted arrivals
that provide a complementary illumination of the velocity compo-
nents in the crucial scale gap and blur the distinction between mi-
gration and tomography because they contain forward-scattering
perturbations to transmission events.

As the information gap narrows, imaging methods that simulta-
neously estimate the velocity and reflectivity model by taking ad-
vantage of all the information in the data are becoming more
attractive. The renewed interest in full-waveform inversion (FWI)
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(Bamberger et al., 1982; Tarantola, 1984) could be mostly explained
as an attempt to overcome the limitations imposed by the sequential
imaging approach, as well as the availability of the computational
power sufficient for practical applications of FWI. FWI has been the
most successful when applied to the low frequencies in the data
(green line in Figure 1) to improve the velocity-model estimation
needed for imaging the high frequencies in the data under complex
overburdens. FWI has been less successful in using the high-
frequencies in the data to tomographically estimate the long wave-
lengths in the model.

Since the 1980s, it has been recognized that FWI has a migration
component and a tomographic component (Mora, 1989). However,
to ensure convergence of the tomographic component, the recorded
and modeled data must be almost in phase with each other; the rule
of thumb being that the residual time shifts must be shorter than the
half-period of the dominant frequency in the data. Bootstrapping the
inversion by starting from the low frequencies may ameliorate the
convergence problems, but it still depends on conventional velocity
estimation methods to deliver starting models sufficiently accurate
to satisfy the convergence criterion for the FWI tomographic com-
ponent. It also undermines the goal of simultaneous estimation be-
cause the high frequencies in the data contain the high-resolution
tomographic information that facilitates the estimation of the veloc-
ity components represented by the blue line in Figure 1.

To perform true simultaneous and synergistic inversion for all the
model scales, we must address the convergence problems of the
tomographic term in FWI. These convergence problems are related
to the nonlinearity of the solution of the wave equation with respect
to perturbations in the long wavelengths of the velocity model.
Long-wavelength perturbations cause substantial time shifts of
the propagating wavefields that are poorly approximated by the lin-
earization of the wave equation based on the first-order Born
approximation. When recorded events are easily identified and sep-
arated, such as in borehole seismology (Woodward, 1990; Luo and
Schuster, 1991) and global seismology (Dahlen et al., 2000), the
limitation of the Born linearization can be overcome by minimizing
the time lag of the maximum of the crosscorrelation between mod-
eled and recorded data. However, modern reflection data do not
fulfill this assumption, and new methods are needed to ensure con-
vergence of the tomographic term in FWI.

In this paper, we introduce a linearization of the wave equation
based on an extension of the velocity model along the time lag axis
(7). This extension enables the linear modeling of large time shifts
in the propagating wavefields, and consequently in the data. Based
on this extension, we define an objective function that has a model-
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Figure 1. Simplified 1D graphical representation of the separation
of scales in seismic imaging (black line) and how current industry
trends are narrowing the gap between the estimation of long wave-
lengths and short wavelengths (blue and green lines). (Adapted
from J Claerbout’s Imaging the Earth Interior.)
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focusing term in addition to the conventional FWI data-fitting term.
Numerical examples with realistically complex velocity models
demonstrate that this objective function has excellent convergence
behavior.

The usefulness of extending the reflectivity model (as prestack
images in the angle or offset domain) to manage the nonlinearities
in wave-equation velocity analysis was demonstrated in the context
of differential semblance optimization (Symes and Carazzone,
1991; Shen and Symes, 2008) and wave-equation migration veloc-
ity analysis (WEMVA) (Biondi and Sava, 1999; Sava and Biondi,
20044a, 2004b). The generalization of this idea to the extension of
the propagation component of the velocity model (long wavelength)
is first introduced by Symes (2008) and more recently is success-
fully applied by Almomin and Biondi (2012), Biondi and Almomin
(2012), and Sun and Symes (2012). These methods are based on a
velocity extension along the subsurface-offset or plane-wave ray-
parameter axes.

We use an extension along the time lag axis (7) because it is better
suited to describe the large time shifts in wave propagation that are
at the root of FWI convergence problems. Furthermore, extending
the velocity along the time lag axis can easily handle forward-
scattered events recorded at long offsets as well as the reflections
recorded at near and intermediate offsets. In contrast, a subsurface-
offset extension would require the vertical offset as well as the hori-
zontal offsets to properly model large time shifts for long-offset
data. Three subsurface offsets would be required in 3D, and thus
the computational burden would increase by several order of mag-
nitude. Yang and Sava (2009, 2010) discuss the use and the com-
putational advantages of time-lag gathers to perform WEMVA for
reflected events.

TOMOGRAPHIC FULL-WAVEFORM
INVERSION (TFWI)

Conventional FWI is performed by solving the following optimi-
zation problem:

méinJFWI(S)? (D

where

1
Jrwi(s) :EHL:(S) —d|3. )

where s = s(x) is the vector of gridded slowness values and £ is a
wave-equation operator, whose solutions are nonlinear with respect
to slowness perturbations. The data vector d is a subset of the pres-
sure-field vector w = w(z, X) extracted at the surface through a lin-
ear sampling operator K, such as d = Kw.

The wave-equation operator is usually evaluated by recursively
solving the following finite difference equation:

S2D, — V2w = f, 3)

where D, is a finite-difference representation of the second deriva-
tive in time, V2 is a finite-difference representation of the Laplacian,
and f is the source function. The diagonal matrix S? is constructed
from the vector s?; its diagonal elements are the elements of s after
replication along the time axis.
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The most efficient solution of the optimization problem ex-
pressed in equation 1 is performed by gradient-based methods,
and thus it requires the evaluation of the linear operator L, which
is the linearization of £ with respect to slowness perturbations 5s.
This linear operator can be derived by perturbing equation 3 as
follows:

[(So> + 887)D, — V2] (W, + 6w) =T, @

where w, and S, are the background wavefield and slowness, re-
spectively, and 6w is the scattered wavefield. The diagonal matrices
S,? and 8S? are formed from the corresponding vectors s, and &s”
in the same way as described above for matrix S2.

Equation 4 can be rewritten as the following coupled equations:

[SO2D2 - Vz]wo =f, ()

[Se2D; — V?]|ow = 58°D, (W, + ow), (6)

which represent a nonlinear relationship between the slowness per-
turbations and the scattered wavefield. In conventional FWI, to lin-
earize this relationship, we drop the term multiplying the
perturbations with each other; that is, we drop the scattered wave-
field from the right side of equation 6 and obtain the following
coupled equations:

[S,?D; — V2w, =, (7

[S,2D, — V25w = 5S°D,w,. 8)

The linear operator L is evaluated by recursively propagating the
background wavefield w, and the scattered wavefield 8w by solving
equations 7 and 8. Its adjoint operator L', which is needed to com-
pute the gradient of the FWI objective function 1, is evaluated by
backward propagating the scattered wavefield solving equation 8
using the data residuals as boundary conditions and evaluating
the zero time lag of the crosscorrelation between the background
and scattered wavefields.

Equations 7 and 8 define a linear relationship between éw and
8s?; however, they cannot model large time shifts between the back-
ground wavefield and the scattered wavefield. These large time
shifts are correctly modeled by equations 5 and 6 through multiple
scattering, that is, by the accumulation of time shifts into the scat-
tered wavefield that enter in the expression of the virtual sources
injected by the right side of equation 6. When we drop the scattered
wavefield from equation 6, we prevent this accumulation of large
time shifts into the scattered wavefield.

These observations suggest that a simple method to improve the
capability of the linearization to model large time shifts is to intro-
duce time shifts directly into the slowness perturbations term in the
right side of equation 8. We extend the slowness model along
the time lag axis = and convolve its perturbations 55%(z) with the
second time derivative of the background wavefield; we rewrite
equation 8§ as

[S(z = 0)D, — V2]6w = 687 (7)%D,w,. )

where % denotes convolution in 7. Onward, we use the tilde sign
above operators and model vectors to denote their extension along
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the time-lag axis. The diagonal matrices éﬁ and 6S” are formed from
the corresponding vectors §2 and 657 in the same way as described
above for the matrix S2.

Equations 7 and 9 define the operator L(5(z = 0)), which is non-
linear with respect to §(z = 0), but defines a linear relationship be-
tween 687 and dw. The combination of the wave equation operator
L(s) and of L defines the extended nonlinear operator

L) =LE,(r=0) +LE,(r=0)82.  (10)

The modeling equation 10 is used to define the TFWI objective
function as

I B ~
Jewi(8) =5 I1£3) — dll3 + e 21823, (1

The second term in equation 11 rewards focusing of the data around
zero time lag. It introduces a strong tomographic component, which
is necessary to constrain the optimization problem because the
slowness extension relaxes the constraints on the modeled data kin-
ematics imposed by the data-fitting term (first term) in equation 11.
This objective function can be minimized using a nested optimiza-
tion algorithm with scale mixing, as discussed in the next section.

1D modeling example

We will use a simple 1D numerical example to analyze some of
the characteristics of the TFWI method we introduced above. Fig-
ure 2 shows the difference between the background wavefield
propagated with v = 1.2 km/s and the wavefield propagated with
the true velocity of v = 1.13 km/s. The source function is a zero-
phase wavelet band limited between 5 and 20 Hz. The wavefield
difference is displayed as a function of propagation distance and
traveltime. The velocity error is sufficiently high that the wavefields
are completely out of phase after propagating for a couple of kilo-
meters. This is therefore a situation like the ones described where
the first-order Born linearization (equation 8) would fail to model

Time (s)

3000 4000 5000 6000 7000
Distance (m)

Figure 2. Difference between the background wavefield computed
with the starting velocity (1.2 km/s) and the wavefield propagated
with the true velocity (1.13 km/s).
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the data residuals and conventional FWI would have difficulties to
converge, even though the problem is extremely simple.

Figure 3 shows the conventional FWI objective functions when
the data are recorded with a single receiver located at 7 km for a
total of 4 km offset from the source. The plot shows the value of the
initial value of the objective function for several 1D transmission
problems sharing the same starting velocity (1.2 km/s) and with
different true velocities. If the true velocity is lower than
~1.18 km/s or larger than =~1.22 km/s, a gradient based method
starting from a velocity of 1.2 km/s will not converge to the right
solution. On the contrary, the linearized modeling equation defined
in equation 9 would have no problem with modeling the data
residual. For example, we can easily reproduce the wavefield differ-
ence shown in Figure 2 by setting the extended-velocity perturba-
tion to be a delta function along the z-axis, where the shift of the
delta function linearly increases with the distance from the origin.

FWI norm

1.13 1.165 1.2 1.235 1.27

True velocity (km/s)

Figure 3. FWI norm as a function of the true velocity, when the
starting velocity is equal to 1.2 km/s.
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Figure 4. Extended velocity perturbation chosen to approximately
model the wavefield difference shown in Figure 2.
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This linear shift is computed by integrating the difference in slow-
ness between the background model and the true model. The ex-
tended-velocity perturbation is shown in Figure 4. Figure 5
shows the result of solving equation 9 with the model shown in
Figure 4. The approximation of the scattered wavefield 6w is almost
identical to the wavefield difference shown in Figure 2.

Diving-wave modeling example

One of the advantages of extending the velocity model along the
time-lag axis 7 is the capability to model with a linear operator large
time shifts in the diving waves recorded by modern long-offset ac-
quisition geometries. The capability of modeling time shifts in these
events is the main reason why the proposed inversion method can
robustly converge even when the starting velocity model is far from
the correct one, as demonstrated by the second synthetic example
presented in this paper.

To show these modeling capabilities, we use one long-offset shot
profile recorded over a half-space with a vertical velocity gradient.
The starting velocity model is assumed to be uniform and equal to
the velocity at the surface. Figure 6a shows the data residual; the
recorded diving wave and the data modeled with the starting veloc-
ity are clearly visible.

The back projection of the data residuals shown in Figure 6a, by
the application of L, generates the velocity perturbation cube
shown in Figure 7. The front panel of the cube shown in Figure 7
displays the zero time lag of the velocity perturbations. A substan-
tial amount of the energy in the residual has been back projected
away from the zero time-lag panel.

Figure 6¢ displays the result of forward modeling the data resid-
uals by the application of L to the extended velocity perturbation
shown in Figure 7. Although a “squaring” of the wavelet is evident
in Figure 6c, the kinematics of these modeled residuals are very
close to the kinematics of the true residuals shown Figure 6a. In
contrast, when we use only the zero time lag of the velocity per-
turbation to model the data residuals; that is, the conventional
first-order Born linearization (front panel of the cube shown in
Figure 7), we obtain the seismograms displayed in Figure 6b.

Time (s)

4000 5000 6000 7000
Distance (m)

3000

Figure 5. Perturbed wavefield computed by solving equation 9 with
the model shown in Figure 4.
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The diving wave is totally missing from these modeled residuals
because the background wavefield propagates with constant veloc-
ity along the horizontal direction.

a) Offset (km) b)
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Offset (km)
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Figure 6. (a) Difference between the background wavefield com-
puted with the starting velocity and the wavefield propagated with
the true velocity, (b) data residual modeled from zero lag of the
velocity perturbation cubes (front panel in cubes shown in Figures 7
and 8), (c) data residual modeled from the velocity perturbations
extended along the time-lag axis (Figure 7), and (d) data residual
modeled from the velocity perturbations extended along the hori-
zontal subsurface offset axis (Figure 8).
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Figure 7. Velocity-perturbation cube extended along the time-lag
axis and computed by back projecting the data residuals shown in
Figure 6a.

WA133

Figure 8 shows the velocity perturbation cube when the velocity
is extended along the horizontal subsurface offset axis. The front
panel of the cube displays the zero subsurface offset, and thus it
is identical to the front panel of the cube shown in Figure 7.
Figure 6d displays the result of forward modeling the data residuals
starting from the extended velocity perturbation shown in Figure 8.
The diving wave event is present in these modeled residuals. How-
ever, it dies out at larger offsets, starting at about 8 km. A subsurface
offset extension of the velocity has difficulties in modeling large
time shifts in transmitted events propagating in directions orthogo-
nal to the subsurface offset axes. Consequently, as the propagation
paths of the diving waves have longer vertical components, the less
accurate the modeled residuals are. To address this limitation, we
could use the vertical subsurface offset in addition to the horizontal
ones (Biondi and Symes, 2004), but the computational cost would
increase accordingly. In 3D, we would need to extend the velocity
along three subsurface offsets, increasing further the dimensionality
of the problem, and consequently its computational cost.

OPTIMIZATION METHOD

The minimization of the objective function in equation 11 is a
challenging optimization problem because of the nonlinearities
in the modeling operator L and the occasional contradictory search
directions suggested by the gradients of the data-fitting term and the
focusing term. To overcome these challenges, we devised and tested
the nested optimization scheme with scale mixing described below
and summarized in Table 1.

Nested inversion

The proposed nested optimization scheme consists of an outer
and an inner loop. In the outer loop, we first compute the nonlinear
data residual Ad =d — £(8,), where §, is the current slowness
model. The nonlinear residual is used as the “observed” data for
the inner loop. The output of the inner loop is a velocity update As.
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Figure 8. Velocity-perturbation cube extended along the horizontal
subsurface-offset axis and computed by back projecting the data
residuals shown in Figure 6a.
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In the inner loop, we formally separate the slowness model into a
background model b on which the operator L depends nonlinearly
and a perturbation model p?(z) on which the output of the operator
L depends linearly. The objective function minimized in the inner
loop is

1 -
Jrrrwi (b, p) = 5 |L(b)p? — Ad|3 +elllz[p*|3.  (12)

The starting models for the inner iterations are b, = §,(r = 0) and
P, = 0. The output of the inner loop after N L-BFGS iterations
(Nocedal, 1980) is AS = (by —b,) + py(z = 0).

Unless the starting background slowness b, is very close to the
true slowness, no choice of b and p will simultaneously zero the two
terms in the objective function (equation 12). This happens because
of the particular choice of the data residual Ad, that is, the difference
between the recorded data and the data modeled with b,. However,
the models b and p that minimize this objective function provide an
effective update AS for the outer loop of the nested optimization
problem.

The output of the modeling operator L is linear with respect to
perturbation p? but nonlinear with respect to the background com-
ponent b. Therefore, another linearization around the “background”
background is required to compute the gradient. The Born approxi-
mation is used (again) to linearize the L operator with respect to the
background resulting in a data-space tomographic operator, T. Ap-
pendix A describes the derivation of this new data-space tomo-
graphic operator and how to numerically evaluate it and its
adjoint. The expression of the two gradients at the inner iteration
i is the following:

Ve = T'(b;, p;)[L(b,)p? — Ad], (13)

Table 1. Nested optimization algorithm.

iterate { j =0, ...,.M

Ad;<d - L(3))
b,<s;(z = 0)
p,<0

iterate {i =0, ...,N
rqg<L(b;)p? — Ad;
T < |7[p}
rnorm<_0'5||rd“% + 05€||rmH%
Vy:<T'(b;, p;)rq (equation 13)
Ve <—L'(b,)rq + €|t rm (equation 14)
(Ap?, Ab?)<scale mixing (V 2, V)
(equations 15 and 16)
?pm ,b; +12<—L—BFGS stepper
Pi bi’ Ap ’ Abz’ rnorm)
}
A%<« low-pass filter (p%(z = 0) + b%, — §2(r = 0))
§7,, <8 + A§?

}

Biondi and Almomin

V> = L'(b,)[L(b,)p? — Ad] + ez?p?.

p (14)

Scale mixing

In the inner loop, a straightforward use of the gradients is used to
update their corresponding models directly. However, this would
hinder the simultaneous inversion of different wavelengths of the
model. This problem becomes apparent when we examine the result
of the two operators in the inner loop. At the first iteration, the ap-
plication of L’ to the data residual Ad is equivalent to “migrating”
the data, and it could give a tomographic update that manifests as a
low-wavenumber update. In a conventional migration, this low-
wavenumber component is considered noise and filtered out. How-
ever, it is actually a tomographic component that should feed into
the background model. The opposite argument is also true for the
tomographic operator creating short-wavelength perturbations.
Therefore, to improve our inversion results, we first mix the two
gradients (V:, V,;2) and then separate them in the Fourier domain
to get the update of each model as follows:

AP (X) = —Cip (Vi (X) + Ve (x,7=0)),  (15)
where Abz(;) is the search direction of the background model and
C,, is a low-pass filter along the space coordinates x. Similarly, we
can compute the update of the perturbation model as

ApP*(X.7) = =Cp (Vi (X) + Ve (x.7)). (16
where Apz(}, 7) is the search direction of the perturbation model
and C,; is a high-pass filter along the space coordinates x. To sum
the two gradients properly, both of them need to have the same units
as well as the same scale. This requires careful implementation of
each operator at each linearization.

In the examples of this paper, we used a radial cut-off in the Fou-
rier domain with a cosine squared taper. The wavelength cut-off is
inversely proportional to the dominant frequency in the data as well
as the average slowness of the initial model. The two filters were
designed such that they always sum to one at all wavelengths to
maintain the energy of the gradients. It is possible to design a more
accurate filter that varies with frequency and slowness, but it is not
necessary because both models will eventually be added to the
slowness. This relative insensitivity is another benefit of applying
the nested scheme we presented, in comparison with inverting the
models separately and combining them only at the end. If the latter
approach were implemented, the final results would be more sen-
sitive to the choice of the scale-separation parameters.

Low-pass filtering of velocity update

We also found that to speed up convergence of the inversion al-
gorithm, it is also helpful to apply a low-pass filter to the velocity
update resulting from the last iteration of the inner loop, before add-
ing it to the background model for the next iteration of the outer
loop. This low-pass filtering is denoted “low-pass filter” in Table 1.

The passband of the low-pass filter becomes wider with itera-
tions, and at later iterations, the filter is not applied at all. This filter-
ing saves iterations because it spares the inversion process from
having to move sharp boundaries in the velocity model from their
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positions determined by the initial velocity to the final positions,
which are consistent with the more accurate final velocity.

Brief discussion of optimization algorithm

This nested scheme has many benefits compared to a more con-
ventional way of solving a tomographic inversion followed by an
imaging inversion or even doing them simultaneously. The first ben-
efit of this scheme is that the limitation of the linearized, first-order
Born operator will not prevent the optimization from inverting
higher order scatterings, such as multiple reflections and prismatic
events. In this setup, the Born operator will attempt to match the
first-order scattering from the background, which is not necessarily
primary data because the background itself can generate many or-
ders of scatterings if it contains sharp boundaries (and it will in later
iterations). In other words, the linearized operator will account for
one additional order of scattering at a time. Higher and higher scat-
tering orders will be introduced with outer-loop iterations, until we
eventually invert all the multiple-scattered events that are present in
the data. This also means that higher order scattered energy will
initially be wrongly positioned in the model, but later iterations will
correct for this mispositioning. The second benefit of this scheme is
that it produces only one slowness model because we keep pushing
background and perturbation into the slowness model, in contrast to
the method presented in Almomin and Biondi (2012). Therefore,
our goal is to drive the perturbation to a minimum and have the
background explain the data.

TFWI OF MARMOUSI DATA

The Marmousi 2 model (Martin et al., 2002) is used for the first
synthetic. Figure 9 shows the true velocity model. The water layer is
thicker than in the original Marmousi; this thicker layer reduces the
amount of refracted energy being recorded in the data. Therefore,
this data set tests the capabilities of the inversion method to con-
verge in presence of almost exclusively reflected events. In contrast,
the example presented in the next section tests the capabilities of the
method to deal with mixed reflected/refracted arrivals.

There are 851 fixed receivers with spacing of 20 m and 171
sources with spacing of 100 m. We use a band-passed wavelet with
a frequency range between 5 and 25 Hz and a small taper on both
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Figure 9. The true velocity of the Marmousi example.
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ends. The purpose of using this wavelet is to completely eliminate
unrealistically low frequencies in the data. The data were modeled
using a constant-density finite-difference solution of the acoustic
wave equation. The initial model is shown in Figure 10, which
is obtained by laterally averaging the true model, after clipping
out the anomalous high-velocity salt bodies.

Figure 11 shows the inversion results after 35 outer-loop itera-
tions, each of them with 10 inner iterations. The relative weight be-
tween the data-fitting and the model-focusing terms in the objective
function (e in equation 11) was determined heuristically. It was set
to the value that balanced the magnitude of the two terms at the
second inner iteration. The z-axis spanned the —0.5-0.5 s range,
with 5 ms sampling. The inversion shows remarkable results in re-
constructing the velocity model. The results degrade only near the
side edges of the model because of limited illumination by the data.
To facilitate the comparison, the three velocity models shown in
Figures 9-11 are displayed using the same clip values; conse-
quently, the same color corresponds to the same velocity value
for all three figures.

Figure 12 shows the norm of the data-residual vector of TFWI
(the first term in equation 11) as a function of the number of outer-
loop iterations. The data residuals are almost zero after 30 outer
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Figure 10. The initial velocity of the Marmousi example.
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Figure 11. The inverted velocity of the Marmousi example.
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iterations. Notice that the TFWI residuals are not monotonically
decreasing because the model estimated using the inner iterations
is not guaranteed to reduce the data-fitting residuals evaluated using
the first term in equation 11.

Figures 13 and 14 provide a clear illustration of the substantial
improvements in the accuracy with which the final velocity model
describes the data kinematics as compared with the initial one.
Figure 13 shows the migrated image corresponding to the initial
velocity; most of the reflectors are out of focus and mispositioned.
The kinematic errors are so large that they prevent conventional
FWI from converging. Furthermore, the focusing of the reflectors
in the middle of the section is so poor that conventional migration
velocity analysis (either ray- or wave-equation-based) may have
troubles to be bootstrapped and to start converging toward a
good velocity model. In contrast, Figure 14 shows the migrated
image corresponding to the final velocity. Reflectors are well fo-
cused and the structures are well imaged. In the middle of the

Method

5e+05
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Number of outer iterations

Figure 12. Norm of data-residual vector of TFWI (the first term in
equation 11) as a function of the number of outer-loop iterations.
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Figure 13. Migrated image using the initial velocity for the Mar-
mousi example.

Biondi and Almomin

section, even the deepest reflectors are well focused and accurately
positioned.

TFWI OF LONG-OFFSET DATA

To verify the capabilities of the TFWI method to invert diving
waves, we tested it on a synthetic data set recorded with long off-
sets. The data were generated over the Caspian Sea portion of the
well-known BP velocity model, as shown in Figure 15. The receiver
array was assumed to be fixed at the surface, and thus data with
almost 30 km long offsets were recorded. There are 297 sources
with 100 m shot spacing and 1484 receivers with 20 m spacing.
The source was a band-passed wavelet between 5 and 25 Hz.
No energy was present below 3 Hz. The data were modeled using
a constant-density finite-difference solution of the acoustic wave
equation.
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Figure 14. Migrated image using the final velocity for the Mar-
mousi example.
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Figure 15. Portion of the BP velocity model used for the numerical
test of the proposed TFWI method. The model contains both low-
velocity anomalies (shallow gas) and a high-velocity anomaly on
the flanks of the mud volcano.
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Figure 16 shows the data recorded for the shot at the horizontal
coordinate of 4 km. Strong and complex diving waves and refracted
arrivals are visible in the data starting from approximately 8 km
offsets. These events carry useful information on the velocity, in
particular, in the shallow part of the section. In this data set, they
are extremely useful to define the low-velocity anomalies present
around the depth of 2 km.

The starting model, shown in Figure 17, was a simple horizon-
tally invariant model obtained by horizontally averaging the true
model after the low- and high-velocity anomalies were removed.
Figure 18 shows the shot gather located at the same location as
the one shown in Figure 16, but modeled with the starting model.
As a direct comparison of Figure 16 with Figure 18 demonstrates,

Offset (km)
4 8 12 16 20 24 28

Time (s)

Figure 16. Leftmost shot profile recorded on the model shown in
Figure 15. Notice several diving waves and refractions present in
the data at offsets larger than 8 km. These events carry useful in-
formation for the estimation of the velocity anomalies present in the
model.
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Figure 17. Starting model for the TFWI inversion. This model was
obtained by horizontal averaging of the model shown in Figure 15,
after the low- and high-velocity anomalies were removed. The lack
of low frequencies in the data makes this model inappropriate for
starting a conventional FWI inversion.
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the differences between the true and starting models cause large
time shifts in the diving-wave arrivals. The inaccuracies of the start-
ing model, together with the lack of low frequencies in the data,
prevent conventional FWI from converging to any useful model.
Figure 19 shows the result of FWI after 200 iterations, at
which time the inversion process was stopped because it was not
converging. Notice that the conventional FWI results are a particular
case of the TFWI results when 7 = 0.

Figure 20 shows the result of the TFWI inversion after 35 outer-
loop iterations of the nested optimization algorithm described
above. As for the Marmousi example, the relative weight between
the data-fitting and the model-focusing terms in the objective func-
tion (e in equation 11) was determined heuristically. It was set to the
value that balanced the magnitude of the two terms at the second
inner iteration of the inversion. The z-axis spanned the —0.5-0.5 s

Offset (km)
4 8 12 16 20 24 28

Figure 18. Shot gather modeled assuming the starting model shown
in Figure 17 at the same shot location as the data shown in Figure 16.
Notice the large time shifts between the diving-wave arrivals in this
gather with the one shown in Figure 16.
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Figure 19. Estimated model after 200 iterations of conventional
FWI. Because the starting model was inaccurate, and the data have
no energy below 3 Hz, conventional FWI does not converge to any
useful model.
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range, with a 5 ms sampling. All the features of the true model are
accurately reconstructed; only some faint edge artifacts are present.
As from the previous example, the four velocity models are dis-
played using the same clip values, and consequently the same color
corresponds to the same velocity value for all four figures.
Figure 21 shows the norm of the data residual of both FWI (dense
dots) and TFWI (sparse circles), as expressed in equation 2 and in
the first term of equation 11, respectively. For the TFWI process, the
horizontal axis corresponds to number of inner iterations, in contrast
with the previous example in which we plotted the number of outer
iterations (Figure 12). The cost of one TFWI inner iteration is com-
parable to, though higher than, the cost of one FWI iteration. The
plot therefore compares data residuals of models obtained with
comparable computational effort. After 200 iterations, the norm
of FWI residuals is approximately half of the initial and the curve
is flattening out. On the contrary, the TFWI residuals are almost
zero after a little more than 200 inner iterations. Notice that, as

Horizontal location (km)

0 4 8 12 16 20 24 28
o
— <
[<p]
< .
N
'e]

Figure 20. Estimated model after 35 iterations of the outer loop
of the TFWI inversion based on time-lag extension of the velo-
city model. The main features of the true model are accurately
reconstructed.
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Figure 21. Norm of the data-residual vector of FWI (equation 2)
and of TFWI (the first term in equation 11) as a function of the
number of iterations (FWI), and inner-loop iterations (TFWI).
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for the previous example, the TFWI residuals are not monotonically
decreasing because the solution of the inner iteration is not guar-
anteed to reduce the residuals evaluated according to the data-fitting
term of equation 11.

DISCUSSION

The synthetic data used for our tests were modeled using a con-
stant-density finite-difference solution of the acoustic wave equa-
tion. Further tests using synthetic data modeled using the elastic
wave equation and field data are outside the scope of this paper,
but they are needed to further validate the proposed method.

The proposed optimization is effective to demonstrate TFWI con-
vergence properties on 2D data sets modeled assuming complex
geologic models. The application of the proposed method to 3D
problems will require us to extend the velocity model to a 4D hyper-
cube, and thus it would be computationally more expensive than the
applications presented in this paper. However, it would be more ef-
ficient than an extension of the velocity model along the subsurface-
offset axes, which would require at least a 5D velocity hypercube
and possibly a 6D one. The increase in computational cost of TFWI
over conventional FWI is mostly related to the additional floating-
point operations needed to propagate the perturbed wavefields
(introducing a factor of two in computational cost) and the addi-
tional data-movements needed to compute the time-lag correlations.
In our numerical experiments, we measured, in average, a triplica-
tion of the run time for each iteration when we switched from FWI
to TFWL

CONCLUSIONS

The integration of FWI and WEMVA into TFWT has the potential
of yielding a waveform-inversion method that robustly converges to
high-resolution models using the whole bandwidth of the seismic
data simultaneously. We introduced a TFWI method based on the
extension of the velocity along the 7-axis. This extension is based on
a linear operator capable of correctly modeling transmitted events
with large time shifts, as we demonstrate by two numerical exam-
ples: The first is based on a simple 1D model, and the second is
based on a 2D layered model.

To minimize the TFWI objective function, we propose a special-
ized nested inversion scheme. In the inner loop of this scheme, the
extended velocity model is separated into its background and per-
turbation components. The inversion scheme performs simultane-
ous inversion of different model scales by mixing the gradients
of the two components and then separating them in the Fourier
domain.

The results of the inversion of the Marmousi model illustrate the
convergence characteristics of the new method for typical reflection
data. The results of the inversion of a long-offset data set recorded
over the BP Caspian Sea demonstrate that the inversion method
converges when both reflections and diving waves are recorded
in the data and inaccuracies of the starting velocity model create
large errors in the kinematics of the diving waves. When we applied
conventional FWI to the full-bandwidth data starting from the same
inaccurate starting model, the inversion quickly converged to the
unsatisfactory local minimum.



Downloaded 04/11/21 to 109.210.3.57. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/page/policies/terms

DOI:10.1190/ge02013-0340.1

Tomographic FWI

ACKNOWLEDGMENTS

We would like to thank BP for making publicly available the
velocity model of which we used a portion, and IFP and the Uni-
versity of Houston for generating and distributing the Marmousi
models. Almomin would like the thank Saudi Aramco for support-
ing his Ph.D. studies at Stanford. We would like also to thank an
anonymous reviewer who provided useful suggestions that substan-
tially helped to improve the clarity and completeness of the paper.

APPENDIX A

EVALUATION OF THE GRADIENTS
OF THE OBJECTIVE FUNCTION
WITH RESPECT TO B AND P

The minimization of the objective function (equation 12) requires
the computation of the gradients with respect to b and p. These
gradients can be computed by a perturbation analysis of the mod-
eling operator L. As discussed in the main text, L is evaluated by
solving equations 7 and 9. Rewriting these equations in terms of b
and p, the incident wavefield w;, and the scattered wavefield wg, we
obtain

[B/D, — V3]w; =f, (A-1)

[B2D, — V2]w, = P2(7)*D,w;, (A-2)
where the diagonal matrices B? and P? are formed from the corre-
sponding vectors b; and p; in the same way as described in the main
text for the diagonal matrix S. Introducing the perturbations §B? and
SP? in the two model variables into equations A-1 and A-2 and
introducing the corresponding perturbations in the wavefields
ow; and owy yields the following perturbed system:

(B} + 6B*)D, — V2](w; + 6w;) = £, (A-3)
[(B? + 6B?)D, — V2|(w, + dw)
= [P}(z) + 6P (2)]«Dy(W; + 6w;).  (A-d)

By setting 6B> = 0 in equations A-3 and A-4, we derive the fol-
lowing system of equations:

[B%Dz - Vz}wi = f, (A-S)

[B2D, — V2]sw, = 6P2(7)+D,w;, (A-6)
which again defines L and can be used to evaluate the perturbations
in the scattered wavefield 6w and consequently in the recorded data
5d = Kéw, caused by perturbations 5P.

We can derive the data-space tomographic operator T which re-
lates perturbations in the scattered wavefield 6wy to perturbations in
the background model 6B by setting SP?> = 0 and neglecting the
higher order terms in 5B? in equations A-3 and A-4.

This tomographic operator is equal to the sum of two operators T;
and T,. The first operator, T; models perturbations in the scattered
wavefield caused by perturbations in the propagation of the incident
wavefield:
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[BiD, — V?|w; = f, (A7)

[B2D, — V2]6w; = 5B2D,w;, (A-8)
[B2D, — V2]6w, = P2(7)%D,5w;. (A-9)

The second operator Ty models perturbations in the scattered
wavefield caused by perturbations in the propagation of the scat-
tered wavefield itself:

[B?D, — Vw; = f, (A-10)
[B2D, — V2w, = P2(7)+D,w;, (A-11)
[B?D, — V2|éw, = 6B*D,w. (A-12)

Both of these tomographic operators depend nonlinearly on B;
and linearly on P?. They have zero output when P? is equal to zero;
that is, at the first iteration of the inner loop because we set P2 =0
as a starting model of the inner iterations. However, as we update
the linearization at each iteration, starting from the second iteration
the output of T becomes different from zero.

The data-space tomographic operator represented by equa-
tions A-7-A-9 and equations A-10-A-12 is analogous to the
WEMVA operator (Biondi and Sava, 1999; Sava and Vlad,
2008) except that in the WEMVA operator, we keep the data fixed
and vary the image; it is the other way around in this tomographic
operator.
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