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1 Markov Process

1.1 Definitions

Definition 1.1 (Markov Property). Let St = (s0, s1, ...) be a stochastic process evolving according to a transition
dynamic P . This stochastic process satisfies the Markov property if

P (st|s0, s1, ..., st−1) = P (st|st−1), ∀t ∈ N (1)

Definition 1.2 (Markov Process). A Markov Process (MP) is a stochastic process that satisfies the Markov property.

In a RL setting, we often make two additional assumptions:

• Finite state space. The state space of the Markov process is finite. This means that for the Markov process
(s0, s1, ...), there is a state space S with |S| <∞, such that for all realizations of the Markov process, we have
st ∈ S for all t.

• Stationary transition probability. The transition probabilities are time independent:

P (sp = s′|sp−1 = s) = P (sq = s′|sq−1 = s), ∀(p, q) (2)

A Markov process satisfying these assumptions is also sometimes called a Markov chain, although the precise
definition of a Markov chain varies. With these assumptions, we can define characterize a Markov process with the
following definition.

Definition 1.3 (Markov Process/Markov Chain). A Markov Process is a tuple
(
S, P

)
, where

• S is the finite state-space of the Markov process, |S| <∞

• P is the state transition probability model where Pss′ = P [st+1 = s′|st = s]

Lemma 1.1. P (st+n|st = s) = P (sn|s0 = s) for all t and n

Proof. I show this property by induction on n:

• For n = 1, P (st+1|st = s) = P (s1|s0 = s) is true by the stationarity assumption
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• I assume that P (st+n|st = s) = P (sn|s0 = s) is true for n

• I show that P (st+n+1|st = s) = P (sn+1|s0 = s):

P (st+n+1|st = s) =
∑
s′

P (st+n+1, st+n = s′|st = s) (3)

=
∑
s′

P (st+n+1|st = s, st+n = s′)P (st+n = s′|st = s) (4)

=
∑
s′

P (st+n+1|st+n = s′)P (sn = s′|s0 = s) (5)

=
∑
s′

P (sn+1|sn = s′)P (sn = s′|s0 = s) (6)

=
∑
s′

P (sn+1, sn = s′|s0 = s) (7)

= P (sn+1|s0 = s) (8)

Remark:

• Equation 3 is obtained by using the fact that for X,Y, Z random variables,

P (X|Y ) =
∑
z

z P (X,Z = z|Y ) (9)

• Equation 5 is obtained by using the Markov property and the induction assumption

• Equation 7 is obtained by using the Markov property again followed by Bayes rule

P (sn+1|sn = s′)P (sn = s′|s0 = s) = P (sn+1|sn = s′, s0 = s)P (sn = s′|s0 = s) (10)

= P (sn+1, sn = s′|s0 = s) (11)

2 Markov Reward Process

2.1 Definitions

Definition 2.1 (Markov Reward Process). A Markov Reward Process (MRP) is a tuple
(
S, P,R, γ

)
, where

• S is the finite state-space of the Markov process (assume n = |S| <∞)

• P is the state transition probability model where Pss′ = P (st+1 = s′|st = s)

• R : S 7→ R is a reward function that maps states to rewards, R(s) = E[rt|st = s]

• γ ∈ [0, 1] is a discount factor

In a Markov reward process, whenever a transition happens from a current state s to a successor state s′, a reward
is obtained depending on the current state s. Thus for the Markov process (s0, s1, ...), each transition st → st+1 is
accompanied by a reward rt for all i = 0, 1, ..., and so a particular episode of the Markov reward process is represented
as (s0, r0, s1, r1, s2, r2, ...). We should note that these rewards can be either deterministic or stochastic.

Definition 2.2 (Expected reward). For a state s ∈ S, we define the expected reward R(s) by

R(s) = E[r0|s = s0] (12)

Just like the assumption of stationary transition probabilities, going forward we will also assume stationarity
of the rewards. In the deterministic case, this implies that ri = rj wherever si = sj . In the stochastic case, we
require that the cumulative distribution functions (CDF) of the rewards conditioned on the current state be time
independent:

F (ri|si = s) = F (rj |sj = s), (13)
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where F denotes the cumulative distribution function of ri conditioned on si. Therefore, the reward function R(s) is
independent of t and we have the following properties:

P (rt+p|st+p = s) = P (rt|st = s) (14)

R(s) = E(rt|st = s) (15)

Definition 2.3 (Horizon). The horizon H of a Markov reward process is defined as the number of time steps in
each episode (realization) of the process. The horizon can be finite or infinite. If the horizon is finite, then the
process is also called a finite Markov reward process.

Definition 2.4 (Return). The return Gt of a Markov reward process is defined as the discounted sum of rewards
starting at time t up to the horizon H, and is given by

Gt =

H−1∑
k=t

γk−trk, for t ∈ [0, H − 1] (16)

For example, G0 = r0 + γr1 + γ2r2 + ...+ γH−1rH−1

Definition 2.5 (State value function). The state value function Vt(s) for a Markov reward process and a state
s ∈ S is defined as the expected return starting from state s at time t, and is given by the following expression:

Vt(s) = E[Gt|st = s], (17)

and can be interpreted as the long-term value of state s.

Lemma 2.1. Let us assume that

• Transition probability is stationary

• Rewards are stationary

• H is infinite.

Then Vt(s) is independent of t. That is,

Vt(s) = V (s) (18)

Proof. Even though this property seems obvious and intuitive, the proof is not totally straightforward (at least to
me). I conduct the demonstration in two steps:

(1) I prove that E[rt+n|st = s] = E[rn|s0 = s] by recursion on n:

• For n = 0, I use the result the rewards’ stationarity assumption to show that

E(rt|st = s) =
∑
r

r p(rt = r|st = s) (19)

=
∑
r

r p(r0 = r|s0 = s) (20)

= E(r0|s0 = s) (21)

• I assume E[rt+n|st = s] = E[rn|s0 = s] for all n. Then, I show that E[rt+n+1|st = s] = E[rn+1|s0 = s].

E
[
rt+n+1|st = s

]
= E

[
E
[
rt+n+1|st = s, st+n+1 = s′

]
|st = s

]
(22)

= E
[
E
[
rt+n+1|st+n+1 = s′

]
|st = s

]
(23)

=
∑
s′

E
[
rt+n+1|st+n+1 = s′

]
P (st+n+1 = s′|st = s) (24)

=
∑
s′

E
[
rt+n+1|st+n+1 = s′

]
P (sn+1 = s′|s0 = s) (25)

=
∑
s′

E
[
rn+1|sn+1 = s′

]
P (sn+1 = s′|s0 = s) (26)

= E
[
rn+1|s0 = s

]
(27)
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Equation 22 does not come from the law of iterated expectation (as most of the papers/proofs I have seen), but
rather from one form of the tower property for random variables, which states that

E
[
E
[
X|Y,Z

]
|Y
]

= E
[
X|Y

]
, (28)

whereas the law of iterated expectation is

E
[
E
[
X|Z

]]
= E

[
X
]
. (29)

(2) Finally, I conclude that Vt+n(s) = Vt(s)

Vt+n(s) = E
[
Gt+n|st+n = s

]
(30)

= E
[ ∞∑
k=0

γkrt+n+k

∣∣∣st+n = s
]

(31)

=

∞∑
k=0

γkE
[
rt+n+k

∣∣∣st+n = s
]

(32)

=

∞∑
k=0

γkE
[
rt+k

∣∣∣st = s
]

(33)

= Vt(s) (34)

2.2 Bellman Equations

For an infinite horizon MRP, the value function Vt(s) can be decomposed into two parts: (1) an immediate reward
rt, and (2) a discounted value of successor state γVt+1(s′):

V (s) = E[rt + γVt+1(s′)|st = s] (35)

V (s) = R(s) + γ
∑
s′

V (s′)Pss′ (36)

Proof.

V (s) = Vt(s) = E[Gt|st = s] (37)

= E[rt + γGt+1|st = s] (38)

= R(s) + γE[Gt+1|st = s] (39)

= R(s) + γE
[
E
[
Gt+1|st = s, st+1 = s′

]
|st = s

]
(40)

= R(s) + γE
[
E
[
Gt+1|st+1 = s′

]
|st = s

]
(41)

= R(s) + E
[
γVt+1(s′)|st = s

]
(42)

= R(s) + γ
∑
s′

Vt+1(s′)P (st+1 = s′|st = s) (43)

= R(s) + γ
∑
s′

V (s′)Pss′ (44)

Remarks on the proof:

• We used the fact that Gt = rt + γGt+1
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• Equation 40 is obtained by using the tower property (equation 28)

• We used the fact that Vt(s) = Vt+1(s) = V (s) (Lemma 2.1)

Additionally, for n = |S| <∞, equation 36 can be written as linear system of equations,

V = R + γVP, (45)

where V ∈ Rn and R ∈ Rn are the value-function and expected rewards vectors, respectively. P ∈ Rn×n is the
transition probability matrix, where Pi,j = P (st+1 = sj |st = si). Equation can also be written as

which can also be written asv(s1)
...

v(sn)

 =

Rs1...
Rsn

+ γ

Ps1s1 . . . Ps1sn
...

. . .
...

Psns1 . . . Psnsn


v(s1)

...
v(sn)

 . (46)

For γ < 1, (I− γP) is invertible and Equation 45 yields the following analytical solution

V = (I− γP)−1R. (47)

Proof. We show that for 0 ≤ γ < 1, (I− γP) is invertible.

1. We first prove that P has an eigenvalue equal to 1

2. We show that any eigenvalue λ of P is such that |λ| < 1

3. We conclude that I− γP is invertible

1. P is a row stochastic matrix:

|S|∑
j=1

Pij = 1, and λ = 1 is an eigenvalue of P with a corresponding eigenvector

v =

1
...
1



P

1
...
1

 =

1
...
1

 (48)

2. Let λ be an eigenvalue of P with a corresponding eigenvector v. Then, Pv = λv. By examining the ith row, we
can write

|S|∑
j=1

Pijvj = λvi (49)

Let |vk| = max
q
|vq|. Since v is an eigenvector, we have |vk| > 0. Therefore

|λ||vk| = |
|S|∑
j=1

Pijvj | (50)

≤
|S|∑
j=1

Pij |vj | (51)

≤ |vk|
|S|∑
j=1

Pij (52)

= |vk| (53)
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Therefore, |λ| ≤ 1 3. Let us assume that λ = 0 is an eigenvalue of I− γP. Then, there exists v 6= 0 such that

(I− γP)v = 0 (54)

γPv = v (55)

and thus
1

γ
> 1 is an eigenvalue of P, which contradicts our previous result.

3 Markov Decision Process

3.1 Definitions

Definition 3.1 (Markov Decision Process). A Markov Decision Process (MDP) is a tuple
(
S,A, P,R, γ

)
, where

• S is the finite state-space of the Markov process (assume |S| <∞)

• A is the finite action-space available from each state s

• P is the state transition probability model where P ass′ = P (st+1 = s′|st = s, at = a)

• R : S ×A 7→ R is a reward function that maps states to rewards, R(s, a) = E[rt|st = s, at = a]

• γ ∈ [0, 1] is a discount factor

The basic model of the dynamics is that there is a state space S, and an action space A, both of which
we will consider to be finite. The agent starts from a state st at time t, chooses an action at from the action
space, obtains a reward rt and then reaches a successor state st+1. An episode of a MDP is thus represented as
(s0, a0, r0, s1, a1, r1, s2, a2, r2, ...).

Unlike in the case of a Markov Process or a Markov Reward Process where the transition probability was only a
function of the successor state and the current state, the transition probabilities for a MDP at time t are a function
of the successor state st+1 along with both the current state st and the action at, written as P ass′ = P (st+1 = s′|st =
s, at = a). We still assume the principle of stationary transition probabilities which in the context of a MDP is
written mathematically as

P ass′ = P (si+1 = s′|si = s, ai = a) = P (sj+1 = s′|sj = s, aj = a) (56)

Additionally, the reward rt at time t depends on both st and st, in contrast to a Markov Reward Process where
it depended only on the current state. These rewards can be stochastic or deterministic, but just like in the case of
a Markov reward process, we will assume that the rewards are stationary and the only relevant quantity will be the
expected reward which we will denote by R(s, a) for a fixed state s and action a, and defined below:

R(s, a) = E[rt|st = s, at = a] (57)

Definition 3.2 (Policy for MDPs). A policy specifies what action to take in each state of a MDP and fully
defines the behavior of an agent. Policies can either be deterministic or stochastic. To cover both these cases, we
will consider a policy to be a probability distribution over actions given the current state:

πt(a|s) = P (at = a|st = s) (58)

The policy may be varying with time, which is especially true in the case of finite horizon MDPs. We will denote
a generic policy by π, defined as the infinite dimensional tuple π = (π0, π1, ...), where πt refers to the policy at time
t. We will call policies that do not vary with time ”stationary policies”, and indicate them as π, i.e. in this case
π = (π, π, ...).

Given a MDP M =
(
S,A, P,R, γ

)
and a policy π:

• The state sequence (s0, s1, ...) is a Markov Process (S, Pπ)
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• The state/reward sequence (s0, r0, s1, r1, ...) is a Markov reward process (S,Rπ, Pπ, γ)

Additionally, the transition probability matrix and the reward functions are given by

Pπss′ =
∑
a∈A

P (st+1 = s′|st = s, at = a)π(at = a|st = s) (59)

Pπss′ =
∑
a∈A

P (st+1 = s′|st = s, at = a)π(at = a|st = s) (60)

Definition 3.3 (State value function for a MDP). The state-value function V π(s) of a MDP is the expected
return starting from state s, and then following policy π

V πt (s) = Eπ[Gt|st = s], (61)

where Eπ denotes the expected value of a random variable given that the agent follows policy π. The value of the
terminal state (if any) is always zero.

Definition 3.4 (State-action value function for a MDP). The action-value function Qπ of an MDP is the
expected return starting from state s, taking action a, and then following policy π

Qπt (s) = Eπ[Gt|st = s, at = a], (62)

7


