
Markov Decision Processes

Guillaume Barnier

Academic Year 2020-2021

Contents

1 Markov Process 1
1.1 Definitions . 1

2 Markov Reward Process 2
2.1 Definitions . 2
2.2 Bellman Equations . 4

3 Markov Decision Process 6
3.1 Definitions . 6
3.2 Bellman Equations . 7

4 MDP Planning by Dynamic Programming 9
4.1 Policy evaluation (prediction) . 9
4.2 Optimal value function . 9
4.3 Optimal policy . 10
4.4 Bellman optimality equations . 10
4.5 Control . 11

4.5.1 Policy iteration . 11
4.5.2 Policy improvement . 11
4.5.3 Value iteration . 12
4.5.4 Contraction mapping . 13

5 Exercises 13

1 Markov Process

1.1 Definitions

Definition 1.1 (Markov Property). Let St = (s0, s1, ...) be a stochastic process evolving according to a transition
dynamic P . This stochastic process satisfies the Markov property if

p(st|s0, s1, ..., st−1) = p(st|st−1), ∀t ∈ N (1)

Definition 1.2 (Markov Process). A Markov Process (MP) is a stochastic process that satisfies the Markov property.

In a RL setting, we often make two additional assumptions:

• Finite state space. The state space of the Markov process is finite. This means that for the Markov process
(s0, s1, ...), there is a state space S with |S| = n <∞, such that for all realizations of the Markov process, we
have st ∈ S for all t.

• Stationary transition probability. The transition probabilities are time independent:

p(sp = s′|sp−1 = s) = p(sq = s′|sq−1 = s), ∀(p, q) (2)

1

A Markov process satisfying these assumptions is also sometimes called a Markov chain, although the precise
definition of a Markov chain varies. With these assumptions, we can define characterize a Markov process with the
following definition.

Definition 1.3 (Markov Process/Markov Chain). A Markov Process is a tuple
(
S, P

)
, where

• S is the finite state-space of the Markov process, |S| = n <∞

• P is the state transition probability model where Pss′ = p(st+1 = s′|st = s)

Lemma 1.1. p(st+n|st = s) = p(sn|s0 = s) for all t and n

Proof. I show this property by induction on n:

• For n = 1, p(st+1|st = s) = p(s1|s0 = s) is true by the stationarity assumption

• I assume that p(st+n|st = s) = p(sn|s0 = s) is true for n

• I show that p(st+n+1|st = s) = p(sn+1|s0 = s):

p(st+n+1|st = s) =
∑
s′

p(st+n+1, st+n = s′|st = s) (3)

=
∑
s′

p(st+n+1|st = s, st+n = s′)p(st+n = s′|st = s) (4)

=
∑
s′

p(st+n+1|st+n = s′)p(sn = s′|s0 = s) (5)

=
∑
s′

p(sn+1|sn = s′)p(sn = s′|s0 = s) (6)

=
∑
s′

p(sn+1, sn = s′|s0 = s) (7)

= p(sn+1|s0 = s) (8)

Remark:

• Equation 3 is obtained by using the fact that for X,Y, Z random variables,

p(X|Y) =
∑
z

z p(X,Z = z|Y) (9)

• Equation 5 is obtained by using the Markov property and the induction assumption

• Equation 7 is obtained by using the Markov property again followed by Bayes rule

p(sn+1|sn = s′)p(sn = s′|s0 = s) = p(sn+1|sn = s′, s0 = s)p(sn = s′|s0 = s) (10)

= p(sn+1, sn = s′|s0 = s) (11)

2 Markov Reward Process

2.1 Definitions

Definition 2.1 (Markov Reward Process). A Markov Reward Process (MRP) is a tuple
(
S, P,R, γ

)
, where

• S is the finite state-space of the Markov process (assume |S| = n <∞)

• P is the state transition probability model where Pss′ = p(st+1 = s′|st = s)

• R : S 7→ R is a reward function that maps states to rewards, R(s) = E[rt|st = s]

• γ ∈ [0, 1] is a discount factor

2

In a Markov reward process, whenever a transition happens from a current state s to a successor state s′, a reward
is obtained depending on the current state s. Thus for the Markov process (s0, s1, ...), each transition st → st+1 is
accompanied by a reward rt for all i = 0, 1, ..., and so a particular episode of the Markov reward process is represented
as (s0, r0, s1, r1, s2, r2, ...). We should note that these rewards can be either deterministic or stochastic.

Definition 2.2 (Expected reward). For a state s ∈ S, we define the expected reward R(s) by

R(s) = E[r0|s = s0] (12)

Just like the assumption of stationary transition probabilities, going forward we will also assume stationarity
of the rewards. In the deterministic case, this implies that ri = rj wherever si = sj . In the stochastic case, we
require that the cumulative distribution functions (CDF) of the rewards conditioned on the current state be time
independent:

F (ri|si = s) = F (rj |sj = s), (13)

where F denotes the cumulative distribution function of ri conditioned on si. Therefore, the reward function R(s) is
independent of t and we have the following properties:

p(rt+p|st+p = s) = p(rt|st = s) (14)

R(s) = E(rt|st = s) (15)

Definition 2.3 (Horizon). The horizon H of a Markov reward process is defined as the number of time steps in
each episode (realization) of the process. The horizon can be finite or infinite. If the horizon is finite, then the
process is also called a finite Markov reward process.

Definition 2.4 (Return). The return Gt of a Markov reward process is defined as the discounted sum of rewards
starting at time t up to the horizon H, and is given by

Gt =

H−1∑
k=t

γk−trk, for t ∈ [0, H − 1] (16)

For example, G0 = r0 + γr1 + γ2r2 + ...+ γH−1rH−1

Definition 2.5 (State value function). The state value function Vt(s) for a Markov reward process and a state
s ∈ S is defined as the expected return starting from state s at time t, and is given by the following expression:

Vt(s) = E[Gt|st = s], (17)

and can be interpreted as the long-term value of state s.

Lemma 2.1. Let us assume that

• Transition probability is stationary

• Rewards are stationary

• H is infinite.

Then Vt(s) is independent of t. That is,

Vt(s) = V (s) (18)

Proof. Even though this property seems obvious and intuitive, the proof is not totally straightforward (at least to
me). I conduct the demonstration in two steps:

(1) I prove that E[rt+n|st = s] = E[rn|s0 = s] by recursion on n:

• For n = 0, I use the result the rewards’ stationarity assumption to show that

E(rt|st = s) =
∑
r

r p(rt = r|st = s) (19)

=
∑
r

r p(r0 = r|s0 = s) (20)

= E(r0|s0 = s) (21)

3

• I assume E[rt+n|st = s] = E[rn|s0 = s] for all n. Then, I show that E[rt+n+1|st = s] = E[rn+1|s0 = s].

E
[
rt+n+1|st = s

]
= E

[
E
[
rt+n+1|st = s, st+n+1 = s′

]
|st = s

]
(22)

= E
[
E
[
rt+n+1|st+n+1 = s′

]
|st = s

]
(23)

=
∑
s′

E
[
rt+n+1|st+n+1 = s′

]
P (st+n+1 = s′|st = s) (24)

=
∑
s′

E
[
rt+n+1|st+n+1 = s′

]
P (sn+1 = s′|s0 = s) (25)

=
∑
s′

E
[
rn+1|sn+1 = s′

]
P (sn+1 = s′|s0 = s) (26)

= E
[
rn+1|s0 = s

]
(27)

Equation 22 does not come from the law of iterated expectation (as most of the papers/proofs I have seen), but
rather from one form of the tower property for random variables, which states that

E
[
E
[
X|Y,Z

]
|Y
]

= E
[
X|Y

]
, (28)

whereas the law of iterated expectation is

E
[
E
[
X|Z

]]
= E

[
X
]
. (29)

(2) Finally, I conclude that Vt+n(s) = Vt(s)

Vt+n(s) = E
[
Gt+n|st+n = s

]
(30)

= E
[∞∑
k=0

γkrt+n+k

∣∣∣st+n = s
]

(31)

=

∞∑
k=0

γkE
[
rt+n+k

∣∣∣st+n = s
]

(32)

=

∞∑
k=0

γkE
[
rt+k

∣∣∣st = s
]

(33)

= Vt(s) (34)

2.2 Bellman Equations

For an infinite horizon MRP, the value function Vt(s) can be decomposed into two parts: (1) an immediate reward
rt, and (2) a discounted value of successor state γVt+1(s′):

V (s) = R(s) + γ
∑
s′

V (s′)Pss′ (35)

4

Proof.

Vt(s) = E[Gt|st = s] (36)

= E[rt + γGt+1|st = s] (37)

= R(s) + γE[Gt+1|st = s] (38)

= R(s) + γE
[
E
[
Gt+1|st = s, st+1 = s′

]
|st = s

]
(39)

= R(s) + γE
[
E
[
Gt+1|st+1 = s′

]
|st = s

]
(40)

= R(s) + E
[
γVt+1(s′)|st = s

]
(41)

= R(s) + γ
∑
s′

Vt+1(s′)P (st+1 = s′|st = s). (42)

If we assume the transition probability and the rewards to be stationary, and if H is infinite, we then have

V (s) = R(s) + γ
∑
s′

V (s′)Pss′ (43)

Remark on the proof :

• We used the fact that Gt = rt + γGt+1

• Equation 39 is obtained by using the tower property (equation 28)

• We used the fact that Vt(s) = Vt+1(s) = V (s) (Lemma 2.1)

Additionally, for n = |S| <∞, equation 35 can be written as linear system of equations,

V = R + γVP, (44)

where V ∈ Rn and R ∈ Rn are the value-function and expected rewards vectors, respectively. P ∈ Rn×n is the
transition probability matrix, where (P)i,j = Pij = p(st+1 = sj |st = si). Equation can also be written as

which can also be written asv(s1)
...

v(sn)

 =

Rs1...
Rsn

+ γ

Ps1s1 . . . Ps1sn
...

. . .
...

Psns1 . . . Psnsn


v(s1)

...
v(sn)

 . (45)

For γ < 1, (I− γP) is invertible and Equation 44 yields the following analytical solution

V = (I− γP)−1R. (46)

Proof. We show that for 0 ≤ γ < 1, (I− γP) is invertible.

1. We first prove that P has an eigenvalue equal to 1

2. We show that any eigenvalue λ of P is such that |λ| < 1

3. We conclude that I− γP is invertible

1. P is a row stochastic matrix:

|S|∑
j=1

Pij = 1, and λ = 1 is an eigenvalue of P with a corresponding eigenvector

v =

1
...
1



P

1
...
1

 =

1
...
1

 (47)

5

2. Let λ be an eigenvalue of P with a corresponding eigenvector v. Then, Pv = λv. By examining the ith row, we
can write

|S|∑
j=1

Pijvj = λvi (48)

Let |vk| = max
q
|vq|. Since v is an eigenvector, we have |vk| > 0. Therefore

|λ||vk| = |
|S|∑
j=1

Pijvj | (49)

≤
|S|∑
j=1

Pij |vj | (50)

≤ |vk|
|S|∑
j=1

Pij (51)

= |vk| (52)

Therefore, |λ| ≤ 1 3. Let us assume that λ = 0 is an eigenvalue of I− γP. Then, there exists v 6= 0 such that

(I− γP)v = 0 (53)

γPv = v (54)

and thus
1

γ
> 1 is an eigenvalue of P, which contradicts our previous result.

3 Markov Decision Process

3.1 Definitions

Definition 3.1 (Markov Decision Process). A Markov Decision Process (MDP) is a tuple
(
S,A, P,R, γ

)
, where

• S is the finite state-space of the Markov process (assume |S| <∞)

• A is the finite action-space available from each state s

• P is the state transition probability model where P ass′ = P (st+1 = s′|st = s, at = a)

• R : S ×A 7→ R is a reward function that maps states to rewards, R(s, a) = E[rt|st = s, at = a]

• γ ∈ [0, 1] is a discount factor

The basic model of the dynamics is that there is a state space S, and an action space A, both of which
we will consider to be finite. The agent starts from a state st at time t, chooses an action at from the action
space, obtains a reward rt and then reaches a successor state st+1. An episode of a MDP is thus represented as
(s0, a0, r0, s1, a1, r1, s2, a2, r2, ...).

Unlike in the case of a Markov Process or a Markov Reward Process where the transition probability was only a
function of the successor state and the current state, the transition probabilities for a MDP at time t are a function
of the successor state st+1 along with both the current state st and the action at, written as P ass′ = P (st+1 = s′|st =
s, at = a). We still assume the principle of stationary transition probabilities which in the context of a MDP is
written mathematically as

P ass′ = P (si+1 = s′|si = s, ai = a) = P (sj+1 = s′|sj = s, aj = a) (55)

6

Additionally, the reward rt at time t depends on both st and st, in contrast to a Markov Reward Process where
it depended only on the current state. These rewards can be stochastic or deterministic, but just like in the case of
a Markov reward process, we will assume that the rewards are stationary and the only relevant quantity will be the
expected reward which we will denote by R(s, a) for a fixed state s and action a, and defined below:

R(s, a) = E[rt|st = s, at = a] (56)

Definition 3.2 (Policy for MDPs). A policy specifies what action to take in each state of a MDP and fully
defines the behavior of an agent. Policies can either be deterministic or stochastic. To cover both these cases, we
will consider a policy to be a probability distribution over actions given the current state:

πt(a|s) = P (at = a|st = s) (57)

The policy may be varying with time, which is especially true in the case of finite horizon MDPs. We will denote
a generic policy by π, defined as the infinite dimensional tuple π = (π0, π1, ...), where πt refers to the policy at time
t. We will call policies that do not vary with time ”stationary policies”, and indicate them as π, i.e. in this case
π = (π, π, ...).

Remark: Given a MDP M =
(
S,A, P,R, γ

)
and a policy π:

• The state sequence (s0, s1, ...) is a Markov Process (S, Pπ)

• The state/reward sequence (s0, r0, s1, r1, ...) is a Markov reward process (S,Rπ, Pπ, γ)

Additionally, the transition probability matrix and the reward functions are given by

Pπss′ =
∑
a∈A

P (st+1 = s′|st = s, at = a)π(at = a|st = s) (58)

Rπ(s) =
∑
a∈A

R(st = s, at = a)π(at = a|st = s) (59)

Definition 3.3 (State value function for a MDP). The state-value function V π(s) of a MDP is the expected
return starting from state s, and then following policy π

V πt (s) = Eπ[Gt|st = s], (60)

where Eπ denotes the expected value of a random variable given that the agent follows policy π. The value of the
terminal state (if any) is always zero.

Definition 3.4 (State-action value function for a MDP). The action-value function Qπ of an MDP is the
expected return starting from state s, taking action a, and then following policy π

Qπt (s) = Eπ[Gt|st = s, at = a], (61)

In a similar fashion as for the value-function, we can show using the stationarity and finite-horizon assumptions that
Qπi (s) = Qπj (s).

3.2 Bellman Equations

For an infinite horizon MDP, the Bellman recursive equations for the state-value functions are given by

V π(s) = Eπ[rt + γV π(st+1)|st = s] (62)

V π(s) = Rπ(s) + γ
∑
s′

V π(s′)Pπss′ (63)

V π(s) =
∑
a

π(a|s)Qπ(s, a) (64)

V π(s) =
∑
a

π(a|s)
[
R(s, a) + γ

∑
s′

P ass′V
π(s′)

]
(65)

7

The Bellman recursive equations for the action-value functions are given by

Qπ(s, a) = Eπ[rt + γQπ(st+1, at+1)|st = s, at = a] (66)

Qπ(s, a) = R(s, a) + γ
∑
s′

P ass′
∑
a′

π(a′|s′)Qπ(s′, a′) (67)

Qπ(s, a) = R(s, a) + γ
∑
s′

P ass′V
π(s′) (68)

Proof

• Proof of equation 62

V πt (s) = E[Gt|st = s] (69)

= E[rt + γGt+1|st = s] (70)

= E[rt + γE[Gt+1|st+1]|st = s] (71)

= E[rt + γV π(st+1)|st = s] (72)

V π(s) = E[rt + γV π(st+1)|st = s] (73)

• Equation 63 can be derived in a similar way as equation 35.

• Proof of equation 64:

V πt (s, a) = E[Gt|st = s] (74)

=
∑
g

g p(Gt = g|st = s) (75)

=
∑
g

g
∑
a

p(Gt = g, at = a|st = s) (76)

=
∑
g

g
∑
a

p(Gt = g|st = s, at = a)π(at = a|st = s) (77)

=
∑
a

π(at = a|st = s)
∑
g

g p(Gt = g|st = s, at = a) (78)

=
∑
a

π(a|s)E[Gt|st = s, at = a] (79)

=
∑
a

π(a|s)Qπ(s, a) (80)

• Equation 66 can be obtained with a similar proof as equation 62.

• We now prove equation 67.

Qπt (s, a) = E[Gt|st = s, at = a] (81)

= R(s, a) + γE[Gt+1|st = s, at = a] (82)

= R(s, a) + γE
[
E
[
Gt+1|st+1 = s′, at+1 = a′

]
|st = s, at = a

]
(83)

= R(s, a) + γE
[
Qπt+1(s′, a′)|st = s, at = a

]
(84)

= R(s, a) + γ
∑
s′,a′

Qπt+1(s′, a′)p(st+1 = s′, at+1 = a′|st = s, at = a) (85)

= R(s, a) + γ
∑
s′,a′

Qπt+1(s′, a′)p(at+1 = a′|st+1 = s′)p(at+1 = s′|st = s, at = a). (86)

We can then conclude that

Qπ(s, a) = R(s, a) + γ
∑
s′

P ass′
∑
a

Qπ(s′, a′)π(a′|s′) (87)

8

• Equation 65 is obtained by replacing the expression of V π(s) from equation 68 into equation 64

• Finally, equation 65 is obtained by replacing the expression of Qπ(s, a) found in equation 68 into equation 64

4 MDP Planning by Dynamic Programming

Important assumption. In this section, we assume that the dynamics of the world P and R are known and given
to us. We will use these functions to perform two tasks,

• Prediction where the input is (S,A, P,R, γ) and π, and the output is the state-value function V π

• Control where the input is (S,A, P,R, γ) and the output is the optimal state-value function V ∗ and an optimal
policy π∗

4.1 Policy evaluation (prediction)

Policy evaluation is the process of computing the value of V π(s) for all s ∈ S given a fixed policy π.

Algorithm 1: Policy evaluation (PE)

1. Initialize V (s) = 0

2. For k = 1 until convergence,

• For all s ∈ S,

V πk (s) = Rπ(s) + γ
∑
s′

Pπss′V
π
k−1(s′) (88)

Remarks:

• The computational cost of algorithm 1 is O(|S|2)

• By defining the Bellman backup operator Bπ for a policy π, we can show that Bπ is a contraction mapping
(for any norm since we are considering finite-dimensional vector spaces) for γ ≤ 1. That is,

||BπV −BπV ′|| ≤ ||V − V ′||. (89)

This result implies that Bπ has a unique fixed point, and Policy evaluation amounts to computing the fixed
point of Bπ. To do policy evaluation, we repeatedly apply operator until V π stops changing.

4.2 Optimal value function

Definition 4.1 (Optimal state-value function). The optimal state-value function V ∗(s) is the maximum value
function over all policies

V ∗(s) = max
π

V π(s). (90)

Definition 4.2 (Optimal action-value function). The optimal action-value function q∗(s, a) is the maximum
action-value function over all policies

Q∗(s) = max
π

Qπ(s, a). (91)

The optimal value-functions specify the best possible performance in the MDP. In addition, an MDP is “solved”
when we know the optimal value function.

9

4.3 Optimal policy

We can define partial ordering over policies as follows

π ≥ π′ if Vπ(s) ≥ Vπ′(s), ∀s ∈ S (92)

Theorem.

• For any MDP, there exists an optimal policy π∗ that is better or equal to all other policies, π∗ ≥ π for all π

π∗ = argmax
π

V π(s) (93)

• All optimal policies achieve the optimal state-value function, V π
∗
(s) = V ∗(s) for all s

• All optimal policies achieve the optimal action-value function, Qπ
∗
(s, a) = Q∗(s, a) for all s and a

Additionally, an optimal policy can be found by maximizing over Q∗(s, a),

π∗(a|s) = 1 if a = argmax
a

Q∗(s, a) (94)

= 0 otherwise (95)

Therefore, once we know Q∗(s, a), we immediately have the optimal policy.
Property:

• If H is infinite, |S| <∞, then there is exist a deterministic stationary optimal policy, but not necessarily unique

• There exist a unique optimal value function V ∗ = V π
∗

• The number of deterministic policies is |A||S|

4.4 Bellman optimality equations

The four recursive equations are given by

V ∗(s) = max
a

Q∗(s, a) (96)

Q∗(s, a) = Ras + γ
∑
s′∈S

P ass′V
∗(s′) (97)

V ∗(s) = max
a

(
Ras + γ

∑
s′∈S

P ass′V
∗(s′)

)
(98)

Q∗(s, a) = Ras + γ
∑
s′∈S

P ass′ max
a′

Q∗(s′, a′) (99)

Remark.

• From equation 98, we can define the Bellman optimality backup operator B :, which is applied to a value
function and returns a new value function as follows,

BV (s) = max
a

(
Ras + γ

∑
s′∈S

P ass′V (s′)
)
. (100)

Similarly as for Bπ, it can be shown that B is a contraction mapping for γ ≤ 1, which implies that the solution
of equation 98 exists and is unique.

• Consequently, if you find a policy π that satisfy any of the Bellman optimality equations, then π is the optimal
policy. For instance, if we have π such that for all s ∈ S and a ∈ A,

V π(s) = max
a

Qπ(s, a), (101)

then the policy π is optimal, π = π∗.

10

4.5 Control

The goal is to find the optimal deterministic policy for a MDP in a finite-dimensional (tabular) space.

4.5.1 Policy iteration

The goal of this algorithm is to iteratively compute an optimal deterministic policy in an infinite horizon finite-state
MDP. It is composed of two steps as described in algorithm 2. Step 1 of algorithm 2 is performed by applying
algorithm 1. We describe step 2 (referred to as policy improvement) in more details in the next section.

Algorithm 2: Policy iteration (PI)

1. Set i = 0

2. π0(s) randomly initialized

3. While i = 0 or ||πi − πi+1||1 > 0

• Step 1: Evaluate V πi with policy evaluation

• Step 2: Perform policy improvement: πi → πi+1

• i = i+ 1

4.5.2 Policy improvement

In step 2 of algorithm 2, we improve the policy by acting greedily,

πi+1(s) = max
a

Qπi(s, a), (102)

In that case, it can be shown that this way of choosing πi+1 from πi ensures monotonic improvement in policy:

πi+1 ≥ πi (103)

Remark.

• If the policy does not change at a given iteration, then it cannot not change again, and the algorithm has
converged to the optimal policy π∗

• There is a maximum of |A||S| iterations

Proof.
(1) We prove that step 2 of algorithm 2 ensures a monotonic policy improvement.

• We begin by showing that

max
a

Qπi(s, a) ≥ V πi(s), (104)

which is true because

max
a

Qπi(s, a) ≥ max
a

Qπi(s, π(s)) = V πi(s). (105)

• We use the following recursive Bellman equations:

Qπi(s, a) = R(s, a) + γ
∑
s′

P ass′V
πi(s′) (106)

Qπi(s, a) = E[rt + γQπi(st+1, at+1)|st, at] (107)

Qπi(s, πi+1(s)) = E[rt + γV πi(st+1)|st, πi+1(st)]. (108)

11

We show that V πi(s) ≤ V πi+1(s):

V πi(st) = Qπi(st, πi(st)) (109)

≤ Qπi(s, πi+1(st)) (110)

= E[rt + γQπi(st+1, πi(st+1))|st, πi+1(st)] (111)

= E[rt + γV πi(st+1)|st, πi+1(st)] (112)

= Eπi+1
[rt + γV πi(st+1)|st] (113)

= Eπi+1
[rt|st] + Eπi+1

[γV πi(st+1)|st] (114)

(115)

We can now apply the analogous inequality to V πi(st+1),

V πi(st+1) ≤ Eπi+1
[rt+1|st+1] + Eπi+1

[γV πi(st+2)|st+1]. (116)

Therefore,

V πi(st) ≤ Eπi+1 [rt|st] + Eπi+1 [γEπi+1 [rt+1|st+1] + Eπi+1 [γV πi(st+2)|st+1]|st] (117)

= Eπi+1 [rt|st] + γEπi+1 [Eπi+1 [rt+1|st+1]|st] + γ2Eπi+1 [Eπi+1 [V πi(st+2)|st+1]|st] (118)

= Eπi+1 [rt|st] + γEπi+1 [rt+1|st] + γ2Eπi+1 [V πi(st+2)|st] (119)

= Eπi+1 [rt + γrt+1|st] + γ2Eπi+1 [V πi(st+2)|st] (120)

≤ ... (121)

= Eπi+1 [Gt|st]
= V πi+1(st). (122)

(2) We show that if the policy does not change at a given iteration (πi = πi+1), it cannot change after that and the
algorithm has converged to an optimal policy

• If πi+1(s) = πi(s) for all s, then

πi+2(s) = argmax
a

Qπi+1(s, a) = argmax
a

Qπi(s, a) = πi+1(s) (123)

• In such case, the policy is optimal,

V πi(s) = Qπi(s, πi(s)) (124)

= Qπi(s, πi+1(s)) (125)

= max
a

Qπi(s, a) (126)

We found a policy πi such that V πi(s) = Qπi(s, a) for all s ∈ S, which implies that πi is optimal.

4.5.3 Value iteration

Value iteration (algorithm 3) is another technique aimed at computing the optimal value and an optimal policy.
This technique consists building a sequence of value-functions V1, V2, ..., Vk, ... that converges towards the optimal
value function V ∗. This process can be seen as iteratively applying the Bellman optimality backup operator until
convergence, and equation 127 can be seen as Vk+1 = BVk.

Unlike policy iteration, no explicit policy is constructed throughout the iterative. However, once we obtain V ∗, we
can compute the optimal policy using the following Bellman optimality equations,

π∗(s) = argmax
a

Q∗(s, a) (128)

= argmax
a

(
Ras + γ

∑
s′∈S

P ass′V
∗(s′)

)
(129)

12

Algorithm 3: Value iteration (VI)

1. Set k = 1

2. V0(s) = 0 for all s ∈ S

3. Loop until convergence criterion (or until end of episode)

• For all s ∈ S

Vk+1(s) = max
a

(
Ras + γ

∑
s′∈S

P ass′Vk(s′)
)
. (127)

• k = k + 1

4.5.4 Contraction mapping

We prove that the Bellman optimality backup operator is a contraction mapping if γ ≤ 1. To do so, we use the
following property,

|max
x

F (x)−max
x

G(x)| ≤ max
x
|F (x)−G(x)|. (130)

We now show that B is a contraction with the infinity norm (all norms in finite-dimensional vector spaces are
equivalent) by proving the following inequality:

||BV −BV ′||∞ ≤ γ||V − V ′||∞, (131)

where ||F || = max
x

F (x).

|BV (s)−BV ′(s)| =
∣∣∣max
a

(
Ras + γ

∑
s′∈S

P ass′V (s′)
)
−max

a

(
Ras + γ

∑
s′∈S

P ass′V
′(s′)

)∣∣∣ (132)

≤ max
a

∣∣∣Ras + γ
∑
s′∈S

P ass′V (s′)−
(
Ras + γ

∑
s′∈S

P ass′V
′(s′)

)∣∣∣ (133)

= γ max
a

∣∣∣ ∑
s′∈S

P ass′
(
V (s′)− V ′(s′)

)∣∣∣ (134)

≤ γ max
a

∑
s′∈S

P ass′max
s′
|V (s′)− V ′(s′)| (135)

= γ max
s′
|V (s′)− V ′(s′)|

(
max
a

∑
s′∈S

P ass′
)

(136)

= γ max
s′
|V (s′)− V ′(s′)| (137)

= γ ||V − V ′||∞. (138)

Therefore,

|BV (s)−BV ′(s)| ≤ γ ||V − V ′||∞ (139)

max
s
|BV (s)−BV ′(s)| ≤ γ ||V − V ′||∞. (140)

Finally,

||BV (s)−BV ′(s)||∞ ≤ γ ||V − V ′||∞. (141)

5 Exercises

13

