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ABSTRACT

Intelligent agents need to generalize from past experience to achieve goals in
complex environments. World models facilitate such generalization and allow
learning behaviors from imagined outcomes to increase sample-efficiency. While
learning world models from image inputs has recently become feasible for some
tasks, modeling Atari games accurately enough to derive successful behaviors
has remained an open challenge for many years. We introduce DreamerV2, a
reinforcement learning agent that learns behaviors purely from predictions in the
compact latent space of a powerful world model. The world model uses discrete
representations and is trained separately from the policy. DreamerV2 constitutes
the first agent that achieves human-level performance on the Atari benchmark of 55
tasks by learning behaviors inside a separately trained world model. With the same
computational budget and wall-clock time, DreamerV2 reaches 200M frames and
exceeds the final performance of the top single-GPU agents IQN and Rainbow.
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Figure 1: Gamer normalized task me-
dian score on the Atari benchmark of 55
games with sticky actions at 200M steps.
DreamerV2 is the first agent that learns
purely within a world model to achieve
human-level Atari performance, demon-
strating the high accuracy of its learned
world model. DreamerV2 further outper-
forms the top single-GPU agents Rain-
bow and IQN, whose scores are provided
by Dopamine (Castro et al., 2018). Ac-
cording to its authors, SimPLe (Kaiser
et al., 2019) was only evaluated on an
easier subset of 36 games and trained for
fewer steps and additional training does
not further increase its performance.

To successfully operate in unknown environments, re-
inforcement learning agents need to learn about their
environments over time. World models are an explicit
way to represent an agent’s knowledge about its environ-
ment. Compared to model-free reinforcement learning
that learns through trial and error, world models facilitate
generalization and can predict the outcomes of potential
actions to enable planning (Sutton, 1991). Capturing gen-
eral aspects of the environment, world models have been
shown to be effective for transfer to novel tasks (Byravan
et al., 2019), directed exploration (Sekar et al., 2020),
and generalization from offline datasets (Yu et al., 2020).
When the inputs are high-dimensional images, latent dy-
namics models predict ahead in an abstract latent space
(Watter et al., 2015; Ha and Schmidhuber, 2018; Hafner
et al., 2018; Zhang et al., 2019). Predicting compact
representations instead of images has been hypothesized
to reduce accumulating errors and their small memory
footprint enables thousands of parallel predictions on a
single GPU (Hafner et al., 2018; 2019). Leveraging this
approach, the recent Dreamer agent (Hafner et al., 2019)
has solved a wide range of continuous control tasks from
image inputs.

Despite their intriguing properties, world models have so
far not been accurate enough to compete with the state-
of-the-art model-free algorithms on the most competi-
tive benchmarks. The well-established Atari benchmark
(Bellemare et al., 2013) historically required model-free
algorithms to achieve human-level performance, such as
DQN (Mnih et al., 2015), A3C (Mnih et al., 2016), or
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Rainbow (Hessel et al., 2018). Several attempts at learning accurate world models of Atari games
have been made, without achieving competitive performance (Oh et al., 2015; Chiappa et al., 2017;
Kaiser et al., 2019). On the other hand, the recently proposed MuZero agent (Schrittwieser et al.,
2019) shows that planning can achieve impressive performance on board games and deterministic
Atari games given extensive engineering effort and a vast computational budget. However, its imple-
mentation is not available to the public and it would require over 2 months of computation to train
even one agent on a GPU, rendering it impractical for most research groups.

In this paper, we introduce DreamerV2, the first reinforcement learning agent that achieves human-
level performance on the Atari benchmark by learning behaviors purely within a separately trained
world model, as shown in Figure 1. Learning successful behaviors purely within the world model
demonstrates that the world model learns to accurately represent the environment. To achieve this, we
apply small modifications to the Dreamer agent (Hafner et al., 2019), such as using discrete latents
and balancing terms within the KL loss. Using a single GPU and a single environment instance,
DreamerV2 outperforms top single-GPU Atari agents Rainbow (Hessel et al., 2018) and IQN (Dabney
et al., 2018), which rest upon years of model-free reinforcement learning research (Van Hasselt et al.,
2015; Schaul et al., 2015; Wang et al., 2016; Bellemare et al., 2017; Fortunato et al., 2017). Moreover,
aspects of these algorithms are complementary to our world model and could be integrated into the
Dreamer framework in the future. To rigorously compare the algorithms, we report scores normalized
by both a human gamer (Mnih et al., 2015) and the human world record (Toromanoff et al., 2019)
and make a suggestion for reporting scores going forward.

2 DREAMERV2

We present DreamerV2, an evolution of the Dreamer agent (Hafner et al., 2019). We refer to the
original Dreamer agent as DreamerV1 throughout this paper. This section describes the complete
DreamerV2 algorithm, consisting of the three typical components of a model-based agent (Sutton,
1991). We learn the world model from a dataset of past experience, learn an actor and critic from
imagined sequences of compact model states, and execute the actor in the environment to grow the
experience dataset. In Appendix A, we include a list of changes that we applied to DreamerV1 and
which of them we found to increase empirical performance.

2.1 WORLD MODEL LEARNING

World models summarize an agent’s experience into a predictive model that can be used in place
of the environment to learn behaviors. When inputs are high-dimensional images, it is beneficial to
learn compact state representations of the inputs to predict ahead in this learned latent space (Watter
et al., 2015; Karl et al., 2016; Ha and Schmidhuber, 2018). These models are called latent dynamics
models. Predicting ahead in latent space not only facilitates long-term predictions, it also allows to
efficiently predict thousands of compact state sequences in parallel in a single batch, without having
to generate images. DreamerV2 builds upon the world model that was introduced by PlaNet (Hafner
et al., 2018) and used in DreamerV1, by replacing its Gaussian latents with categorical variables.

Experience dataset The world model is trained from the agent’s growing dataset of past experience
that contains sequences of images x1:T , actions a1:T , rewards r1:T , and discount factors γ1:T . The
discount factors equal a fixed hyper parameter γ = 0.995 for time steps within an episode and are set
to zero for terminal time steps. For training, we use batches of B = 50 sequences of fixed length
L = 50 that are sampled randomly within the stored episodes. To observe enough episode ends
during training, we sample the start index of each training sequence uniformly within the episode and
then clip it to not exceed the episode length minus the training sequence length.

Model components The world model consists of an image encoder, a Recurrent State-Space Model
(RSSM; Hafner et al., 2018) to learn the dynamics, and predictors for the image, reward, and discount
factor. The world model is summarized in Figure 2. The RSSM uses a sequence of deterministic
recurrent states ht, from which it computes two distributions over stochastic states at each step. The
posterior state zt incorporates information about the current image xt, while the prior state ẑt aims
to predict the posterior without access to the current image. The concatenation of deterministic and
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Figure 2: World Model Learning. The training sequence of images xt is encoded using the CNN.
The RSSM uses a sequence of deterministic recurrent states ht. At each step, it computes a posterior
stochastic state zt that incorporates information about the current image xt, as well as a prior
stochastic state ẑt that tries to predict the posterior without access to the current image. Unlike in
PlaNet and DreamerV1, the stochastic state of DreamerV2 is a vector of multiple categorical variables.
The learned prior is used for imagination, as shown in Figure 3. The KL loss both trains the prior
and regularizes how much information the posterior incorporates from the image. The regularization
increases robustness to novel inputs. It also encourages reusing existing information from past steps
to predict rewards and reconstruct images, thus learning long-term dependencies.

stochastic states forms the compact model state. From the posterior model state, we reconstruct the
current image xt and predict the reward rt and discount factor γt. The model components are:

RSSM


Recurrent model: ht = fφ(ht−1, zt−1, at−1)

Representation model: zt ∼ qφ(zt | ht, xt)
Transition predictor: ẑt ∼ pφ(ẑt | ht)
Image predictor: x̂t ∼ pφ(x̂t | ht, zt)
Reward predictor: r̂t ∼ pφ(r̂t | ht, zt)
Discount predictor: γ̂t ∼ pφ(γ̂t | ht, zt).

(1)

All components are implemented as neural networks and φ describes their combined parameter vector.
The transition predictor guesses the next model state only from the current model state and the action
but without using the next image, so that we can later learn behaviors by predicting sequences of
model states without having to observe or generate images. The discount predictor lets us estimate
the probability of an episode ending when learning behaviors from model predictions.

Neural networks The representation model is implemented as a Convolutional Neural Network
(CNN; LeCun et al., 1989) followed by a Multi-Layer Perceptron (MLP) that receives the image
embedding and the deterministic recurrent state. The RSSM uses a Gated Recurrent Unit (GRU; Cho
et al., 2014) to compute the deterministic recurrent states. The model state is the concatenation of
deterministic GRU state and a sample of the stochastic state. The image predictor is a transposed

Algorithm 1: Straight-Through Gradients with Automatic Differentiation

sample = one_hot(draw(logits)) # sample has no gradient
probs = softmax(logits) # want gradient of this
sample = sample + probs - stop_grad(probs) # has gradient of probs
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CNN and the transition, reward, and discount predictors are MLPs. We down-scale the 84 × 84
grayscale images to 64× 64 pixels so that we can apply the convolutional architecture of DreamerV1.
We use the ELU activation function for all components of the model (Clevert et al., 2015). The world
model uses a total of 20M trainable parameters.

Distributions The image predictor outputs the mean of a diagonal Gaussian likelihood with unit
variance, the reward predictor outputs a univariate Gaussian with unit variance, and the discount
predictor outputs a Bernoulli likelihood. In prior work, the latent variable in the model state was
a diagonal Gaussian that used reparameterization gradients during backpropagation (Kingma and
Welling, 2013; Rezende et al., 2014). In DreamerV2, we instead use a vector of several categorical
variables and optimize them using straight-through gradients (Bengio et al., 2013), which are easy to
implement using automatic differentiation as shown in Algorithm 1. We discuss possible benefits of
categorical over Gaussian latents in the experiments section.

Loss function All components of the world model are optimized jointly. The distributions produced
by the image predictor, reward predictor, discount predictor, and transition predictor are trained to
maximize the log-likelihood of their corresponding targets. The representation model is trained to
produce model states that facilitates these prediction tasks, through the expectation below. Moreover,
it is regularized to produce model states with high entropy, such that the model becomes robust to
many different model states during training. The loss function for learning the world model is:

L(φ) .= Eqφ(z1:T | a1:T ,x1:T )

[
1
T

∑T
t=1

(
− ηx ln pφ(xt | ht, zt)

image log loss

− ηr ln pφ(rt | ht, zt)
reward log loss

− ηγ ln pφ(γt | ht, zt)
discount log loss

− ηt ln pφ(zt | ht)
transition log loss

+ ηq ln qφ(zt | ht, xt)
entropy regularizer

)]
.

(2)

We jointly minimize the loss function with respect to the vector φ that contains all parameters
of the world model using the Adam optimizer (Kingma and Ba, 2014). We use the loss scales
ηx = 1/(64 · 64 · 3) for the image, ηr = 1 for the reward, ηγ = 1 for the discount, ηt = 0.08 for the
transition, and ηq = 0.02 for the entropy regularizer. Scaling the transition loss up compared to the
entropy regularizer allows us to encourage learning an accurate transition function.

Probabilistic interpretation The world model loss function in Equation 2 is the ELBO or varia-
tional free energy of an hidden Markov model that is conditioned on the action sequence. The world
model can thus be interpreted as a sequential VAE, where the representation model is the approximate
posterior and the transition predictor is the temporal prior. In the ELBO objective, the transition loss
and entropy regularizer together form the KL regularizer. Scaling the image loss relative to the KL
regularizer is known as beta-VAE (Higgins et al., 2016). We separately scale the two terms within the
KL, the prior cross entropy and the posterior entropy. We refer to this technique as KL balancing. It
can be implemented as shown in Algorithm 2. KL balancing encourages learning an accurate prior
over increasing posterior entropy, so that the prior better approximates the aggregate posterior.

2.2 BEHAVIOR LEARNING

DreamerV2 learns long-horizon behaviors purely within its world model using an actor and a critic.
The actor chooses actions for predicting imagined sequences of compact model states. The critic
accumulates the future predicted rewards to take into account rewards beyond the planning horizon.
Both the actor and critic operate on top of the learned model states and thus benefit from the
representations learned by the world model. The world model is fixed during behavior learning, so
the actor and value gradients do not affect its representations. Not predicting images during behavior
learning lets us efficiently simulate 2500 latent trajectories in parallel on a single GPU.

Algorithm 2: KL Balancing with Automatic Differentiation

kl_loss = eta_t * compute_kl(stop_grad(posterior), prior)
+ eta_q * compute_kl(posterior, stop_grad(prior))

4
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Figure 3: Actor Critic Learning. The world model learned in Figure 2 is used for learning a policy
from trajectories imagined in the compact latent space. The trajectories start from posterior states
computed during model training and predict forward by sampling actions from the actor network.
The critic network predicts the expected sum of future rewards for each state. The critic uses temporal
difference learning on the imagined rewards. The actor is trained to maximize the critic prediction,
via reinforce gradients, straight-through gradients of the world model, or a combination of them.

Imagination MDP To learn behaviors within the latent space of the world model, we define the
imagination MPD as follows. The distribution of initial states ẑ0 in the imagination MDP is the
distribution of compact model states encountered during world model training. From there, the
transition predictor pφ(ẑt | ẑt−1, ât−1) outputs sequences ẑ1:H of compact model states up to the
imagination horizon H = 15. The mean of the reward predictor pφ(r̂t | ẑt) is used as reward
sequence r̂1:H . The discount predictor pφ(γ̂t | ẑt) outputs the discount sequence γ̂1:H that is used to
down-weight rewards. Moreover, we weigh the loss terms of the actor and critic by the cumulative
predicted discount factors to softly account for the possibility of episode ends.

Model components To learn long-horizon behaviors in the imagination MDP, we leverage a
stochastic actor that chooses actions and a deterministic critic. The actor and critic are trained
cooperatively, where the actor aims to output actions that lead to states that maximize the critic output,
while the critic aims to accurately estimate the sum of future rewards achieved by the actor from each
imagined state. The actor and critic use the parameter vectors ψ and ξ, respectively:

Actor: ât ∼ pψ(ât | ẑt)

Critic: vξ(ẑt) ≈ Epφ,pψ

[∑
τ≥t γ̂

τ−tr̂τ

]
.

(3)

In contrast to the actual environment, the latent state sequence is Markovian, so that there is no need
for the actor and critic to condition on more than the current model state. The actor and critic are
both MLPs with ELU activations (Clevert et al., 2015) and use 1M trainable parameters each. The
actor outputs a categorical distribution over actions and the critic has a deterministic output. The two
components are trained from the same imagined trajectories but optimize separate loss functions.

Critic loss function The critic aims to predict the discounted sum of future rewards that the actor
achieves in a given model state, known as the state value. For this, we leverage temporal-difference
learning, where the critic is trained toward a value target that is constructed from intermediate rewards
and critic outputs for later states. A common choice is the 1-step target that sums the current reward
and the critic output for the following state. However, the imagination MDP lets us generate on-policy
trajectories of multiple steps, suggesting the use of n-step targets that incorporate reward information
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into the critic more quickly. We follow DreamerV1 in using the more general λ-target (Sutton and
Barto, 2018; Schulman et al., 2015) that is defined recursively as follows:

V λt
.
= r̂t + γ̂t

{
(1− λ)vξ(ẑt+1) + λV λt+1 if t < H,

vξ(ẑH) if t = H.
(4)

Intuitively, the λ-target is a weighted average of n-step returns for different horizons, where longer
horizons are weighted exponentially less. We set λ = 0.95 in practice, to focus more on long horizon
targets than on short horizon targets. Given a trajectory of model states, rewards, and discount factors,
we train the critic to regress the λ-return using a squared loss:

L(ξ) .= Epφ,pψ

[
1

H−1
∑H−1
t=1

1
2

(
vξ(ẑt)− sg(V λt )

)2]
(5)

We optimize the critic loss with respect to the critic parameters ξ using the Adam optimizer. There
is no loss term for the last time step because the target equals the critic at that step. We stop the
gradients around the targets, denoted by the sg(·) function, as typical in the literature. We stabilize
value learning using a target network (Mnih et al., 2015), namely, we compute the targets using a
copy of the critic that is updated every 100 gradient steps.

Actor loss function The actor aims to output actions that maximize the prediction of long-term
future rewards made by the critic. To incorporate intermediate rewards more directly, we train the
actor to maximize the same λ-return that was computed for training the critic. There are different
gradient estimators for maximizing the targets with respect to the actor parameters. DreamerV2
combines unbiased but high-variance Reinforce gradients with biased but low-variance straight-
through gradients. Moreover, we regularize the entropy of the actor to encourage exploration where
feasible while allowing the actor to choose precise actions when necessary.

Learning by Reinforce (Williams, 1992) maximizes the actor’s probability of its own sampled actions
weighted by the values of those actions. The variance of this estimator can be reduced by subtracting
the state value as baseline, which does not depend on the current action. Intuitively, subtracting the
baseline centers the weights and leads to faster learning. The benefit of Reinforce is that it produced
unbiased gradients and the downside is that it can have high variance, even with baseline.

DreamerV1 relied entirely on reparameterization gradients (Kingma and Welling, 2013; Rezende
et al., 2014) to train the actor directly by backpropagating value gradients through the sequence
of sampled model states and actions. DreamerV2 uses both discrete latents and discrete actions.
To backpropagate through the sampled actions and state sequences, we leverage straight-through
gradients (Bengio et al., 2013). This results in a biased gradient estimate with low variance. The
combined actor loss function is:

L(ψ) .= Epφ,pψ

[
1

H−1
∑H−1
t=1

(
−ηs ln pψ(ât | ẑt) sg(V λt − vξ(ẑt))

reinforce

−ηdV λt
dynamics
backprop

−ηeH[at|ẑt]
entropy regularizer

)]
.

(6)

We optimize the actor loss with respect to the actor parameters ψ using the Adam optimizer. We use
the loss scale ηs = 0.9 for reinforce and linearly anneal the loss scale for straight-through dynamics
backpropagation ηd = 0.1→ 0.0 and the entropy regularizer ηe = 3 · 10−3 → 3 · 10−4 over the first
10M environment frames. We hypothesize that combining the two gradient estimators is beneficial
because the low-variance straight-through gradients can accelerate early learning, while the unbiased
Reinforce gradients can help find a better final solution. However, we find that using only Reinforce
gradients for optimizing the policy also works well.

3 EXPERIMENTS

We evaluate DreamerV2 on the well-established Atari benchmark with sticky actions, comparing to
four strong model-free algorithms. DreamerV2 outperforms the four model-free algorithms in all
scenarios. For an extensive comparison, we report four scores according to four aggregation protocols
and give a recommendation for meaningfully aggregating scores across games going forward. We
also ablate the importance of discrete representations in the world model. Our implementation of
DreamerV2 reaches 200M environment steps in under 10 days, while using only a single NVIDIA
V100 GPU and a single environment instance. During the 200M environment steps, DreamerV2
learns its policy from 468B compact states imagined under the model, which is 10,000× more than
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Figure 4: Atari performance over 200M steps. The standards in the literature to aggregate over tasks
are shown in the left two plots. They normalize scores by a professional gamer and compute the
median or mean over tasks (Mnih et al., 2015; 2016). In Section 3, we point out limitations of this
methodology. As a robust measure of performance, we recommend the metric in the right-most plot.
We normalize scores by the human world record (Toromanoff et al., 2019) and then clip them, such
that exceeding the record does not further increase the score, before computing the mean.

the 50M inputs received from the real environment after action repeat. Refer to the project website
for videos, the source code, and training curves in JSON format.1

Experimental setup We select the 55 games that prior works in the literature from different
research labs tend to agree on (Mnih et al., 2016; Brockman et al., 2016; Hessel et al., 2018; Castro
et al., 2018; Badia et al., 2020) and recommend this set of games for evaluation going forward.
We follow the evaluation protocol of Machado et al. (2018) with 200M environment steps, action
repeat of 4, a time limit of 108,000 steps per episode that correspond to 30 minutes of game play, no
access to life information, full action space, and sticky actions. Because the world model integrates
information over time, DreamerV2 does not use frame stacking. The experiments use a single-task
setup where a separate agent is trained for each game. Moreover, each agent uses only a single
environment instance. We compare the algorithms based on both human gamer and human world
record normalization (Toromanoff et al., 2019).

Model-free baselines We compare the learning curves and final scores of DreamerV2 to four
model-free algorithms, IQN (Dabney et al., 2018), Rainbow (Hessel et al., 2018), C51 (Bellemare
et al., 2017), and DQN (Mnih et al., 2015). We use the scores of these agents provided by the
Dopamine framework (Castro et al., 2018) that use sticky actions. These may differ from the reported
results in the papers that introduce these algorithms in the deterministic Atari setup. The training
time of Rainbow was reported at 10 days on a single GPU and using one environment instance.

3.1 ATARI PERFORMANCE

The performance curves of DreamerV2 and four standard model-free algorithms are visualized
in Figure 4. The final scores at 200M environment steps are shown in Table 1 and the scores on
individual games are included in Table I.1. There are different approaches for aggregating the scores

Task Median Task Mean Task Mean Task Mean
Agent Gamer Normalized Gamer Normalized Record Normalized Clipped Record Norm

DreamerV2 1.64 13.39 0.36 0.25
IQN 1.32 11.27 0.21 0.21
Rainbow 1.47 9.95 0.17 0.17
C51 1.10 8.25 0.15 0.15
DQN 0.68 3.28 0.12 0.12

Table 1: Atari performance at 200M steps. The scores of the 55 games are aggregated using the
four different protocols described in Section 3. To overcome limitations of the previous metrics, we
recommend the task mean of clipped record normalized scores as a robust measure of algorithm
performance, shown in the right-most column. DreamerV2 outperforms previous single-GPU agents
across all metrics. The baseline scores are taken from Dopamine Baselines (Castro et al., 2018).

1https://danijar.com/dreamerv2
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Figure 5: Clipped record normalized scores of various ablations of the DreamerV2 agent. The score
curves for individual tasks are shown in Figure F.1. The ablations highlight the benefit of using
categorical over Gaussian latent variables and of using KL balancing. Moreover, they show that the
world model relies on image gradients for learning its representations. Stopping reward gradients
even improves performance on some tasks, suggesting that representations that are not specifically
trained to predict previously experienced rewards may generalize better to new situations.

across the 55 games and we show that this choice can have a substantial impact on the relative
performance between algorithms. To extensively compare DreamerV2 to the model-free algorithms,
we consider the following four aggregation approaches:

• Task Median, Gamer Normalized Atari scores are commonly normalized based on a random
policy and a professional gamer, and the median over tasks is reported (Mnih et al., 2015; 2016).
However, if almost half of the scores would be zero, the median would not be affected. Thus, we
argue that median scores are not reflective of the robustness of an algorithm.

• Task Mean, Gamer Normalized Compared to the task median, the task mean considers all
tasks. However, the gamer performed poorly on a small number of games, such as Crazy Climber,
James Bond, and Video Pinball. This makes it easy for algorithms to achieve a high normalized
score on these few games, which then dominate the task mean.

• Task Mean, Record Normalized Instead of normalizing based on the professional gamer,
Toromanoff et al. (2019) suggest to normalize based on the registered human world record of
each game. This partially addresses the outlier problem but the mean is still dominated by a small
number of games, where the algorithms achieve superhuman performance.

• Task Mean, Clipped Record Norm To overcome these limitations, we recommend normaliz-
ing by the human world record and then clipping the scores to not exceed a value of 1, so that
performance above the record does not further increase the score. The result is a robust measure
of algorithm performance on the Atari suite that considers performance across all games.

From Figure 4 and Table 1, we see that the different aggregation approaches let us examine agent
performance from different angles. Interestingly, Rainbow clearly outperforms IQN in the first
aggregation method but IQN clearly outperforms Rainbow in the remaining setups. DreamerV2
outperforms the model-free agents in all four metrics, with the largest margin in record normalized
mean performance. Despite this, we recommend clipped record normalized mean as the most
meaningful aggregation method, as it considers all tasks to a similar degree without being dominated
by a small number of outlier scores.

Individual games The scores on individual Atari games at 200M environment steps are included in
Table I.1, alongside the model-free algorithms and the baselines of random play, human gamer, and
human world record. We filled in reasonable values for the 2 out of 55 games that have no registered
world record. Figure C.1 compares the score differences between DreamerV2 and each model-free
algorithm for the individual games. DreamerV2 achieves comparable or higher performance on most
games except for Video Pinball. We hypothesize that the reconstruction loss of the world model does
not encourage learning a meaningful latent representation because the most important object in the
game, the ball, occupies only a single pixel. One the other hand, DreamerV2 achieves the strongest
improvements over the model-free agents on the games James Bond, Up N Down, and Assault.

3.2 ABLATION STUDY

To understand which ingredients of DreamerV2 are responsible for its success, we conduct an
extensive ablation study. We compare equipping the world model with categorical latents, as in
DreamerV2, to Gaussian latents, as in DreamerV1. Moreover, we study the importance of KL
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balancing. Finally, we investigate the importance of gradients from image reconstruction and reward
prediction for learning the model representations, by stopping one of the two gradient signals before
entering the model states. The results of the ablation study are summarized in Figure 5 and Table 2.
Refer to the appendix for the score curves of the individual tasks.

Categorical latents Categorical latent variables outperform than Gaussian latent variables on 42
tasks, achieve lower performance on 8 tasks, and are tied on 5 tasks. We define a tie as being within
5% of another. While we do not know the reason why the categorical variables are beneficial, we
state several hypotheses that can be investigated in future work:

• A categorical prior can perfectly fit the aggregate posterior, because a mixture of categoricals is
again a categorical. In contrast, a Gaussian prior cannot match a mixture of Gaussian posteriors,
which could make it difficult to predict multi-modal changes between one image and the next.

• The level of sparsity enforced by a vector of categorical latent variables could be beneficial for
generalization. Flattening the sample from the 32 categorical with 32 classes each results in a
sparse binary vector of length 1024 with 32 active bits.

• Despite common intuition, categorical variables may be easier to optimize than Gaussian variables,
possibly because the straight-through gradient estimator ignores a term that would otherwise
scale the gradient. This could reduce exploding and vanishing gradients.

• Categorical variables could be a better inductive bias than unimodal continuous latent variables
for modeling the non-smooth aspects of Atari games, such as when entering a new room, or when
collected items or defeated enemies disappear from the image.

KL balancing KL balancing outperforms the standard KL regularizer on 44 tasks, achieves lower
performance on 6 tasks, and is tied on 5 tasks. Learning accurate prior dynamics of the world model
is critical because it is used for imagining latent state trajectories using policy optimization. By
scaling up the prior cross entropy relative to the posterior entropy, the world model is encouraged to
minimize the KL by improving its prior dynamics toward the more informed posteriors, as opposed
to reducing the KL by increasing the posterior entropy. KL balancing may also be beneficial for
probabilistic models with learned priors beyond world models.

Model gradients Stopping the image gradients increases performance on 3 tasks, decreases perfor-
mance on 51 tasks, and is tied on 1 task. The world model of DreamerV2 thus heavily relies on the
learning signal provided by the high-dimensional images. Stopping the reward gradients increases
performance on 15 tasks, decreases performance on 22 tasks, and is tied on 18 tasks. Figure F.1
further shows that the difference in scores is small. In contrast to MuZero, DreamerV2 thus learns
general representations of the environment state from image information alone. Stopping reward
gradients improved performance on a number of tasks, suggesting that the representations that are
not specific to previously experienced rewards may generalize better to unseen situations.

Policy gradients Using only Reinforce gradients to optimize the policy increases performance on
18 tasks, decreases performance on 24 tasks, and is tied on 13 tasks. This shows that DreamerV2 relies

Task Median Task Mean Task Mean Task Mean
Agent Gamer Normalized Gamer Normalized Record Normalized Clipped Record Norm

DreamerV2 1.64 13.39 0.36 0.25
No Policy ST 1.71 9.85 0.39 0.25
No Layer Norm 1.66 11.29 0.38 0.25
No Reward Gradients 1.68 14.29 0.37 0.24
No Discrete Latents 0.85 3.96 0.24 0.19
No KL Balancing 0.87 4.25 0.19 0.16
No Policy Reinforce 0.72 5.10 0.16 0.15
No Image Gradients 0.05 0.37 0.01 0.01

Table 2: Ablations to DreamerV2 measured by their Atari performance at 200M frames, sorted by the
last column. Each ablation only removes one part of the DreamerV2 agent. Discrete latent variables
and KL balancing substantially contribute to the success of DreamerV2. Moreover, the world model
relies on image gradients to learn general representations that lead to successful behaviors, even if
the representations are not specifically learned for predicting past rewards.
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Algorithm Reward
Modeling

Image
Modeling

Latent
Transitions

Single
GPU

Trainable
Parameters

Atari
Frames

Accelerator
Days

DreamerV2 3 3 3 3 22M 200M 10
SimPLe 3 3 7 3 74M 4M 40
MuZero 3 7 3 7 40M 20B 80
MuZero Reanalyze 3 7 3 7 40M 200M 80

Table 3: Conceptual comparison of recent RL algorithms that leverage planning with a learned model.
DreamerV2 and SimPLe learn complete models of the environment by leveraging the learning signal
provided by the image inputs, while MuZero learns its model through value gradients that are specific
to an individual task. The Monte-Carlo tree search used by MuZero is effective but adds complexity
and is challenging to parallelize. This component is orthogonal to the world model proposed here.

mostly on Reinforce gradients to learn the policy. However, mixing Reinforce and straight-through
gradients yields a substantial improvement on James Bond and Seaquest, leading to a higher gamer
normalized task mean score. Using only straight-through gradients to optimize the policy increases
performance on 5 tasks, decreases performance on 44 tasks, and is tied on 6 tasks. We conjecture that
straight-through gradients alone are not well suited for policy optimization because of their bias.

4 RELATED WORK

Model-free Atari The majority of agents applied to the Atari benchmark have been trained using
model-free algorithms. DQN (Mnih et al., 2015) showed that deep neural network policies can be
trained using Q-learning by incorporating experience replay and target networks. Several works have
extended DQN to incorporate bias correction as in DDQN (Van Hasselt et al., 2015), prioritized
experience replay (Schaul et al., 2015), architectural improvements (Wang et al., 2016), and distri-
butional value learning (Bellemare et al., 2017; Dabney et al., 2017; 2018). Besides value learning,
agents based on policy gradients have targeted the Atari benchmark, such as ACER (Schulman et al.,
2017a), PPO (Schulman et al., 2017a), ACKTR (Wu et al., 2017), and Reactor (Gruslys et al., 2017).
Another line of work has focused on improving performance by distributing data collection, often
while increasing the budget of environment steps beyond 200M (Mnih et al., 2016; Schulman et al.,
2017b; Horgan et al., 2018; Kapturowski et al., 2018; Badia et al., 2020).

World models Several model-based agents focus on proprioceptive inputs (Watter et al., 2015; Gal
et al., 2016; Higuera et al., 2018; Henaff et al., 2018; Chua et al., 2018; Wang et al., 2019; Wang
and Ba, 2019), model images without using them for planning (Oh et al., 2015; Krishnan et al.,
2015; Karl et al., 2016; Chiappa et al., 2017; Babaeizadeh et al., 2017; Gemici et al., 2017; Denton
and Fergus, 2018; Buesing et al., 2018; Doerr et al., 2018; Gregor and Besse, 2018), or combine
the benefits of model-based and model-free approaches (Kalweit and Boedecker, 2017; Nagabandi
et al., 2017; Weber et al., 2017; Kurutach et al., 2018; Buckman et al., 2018; Ha and Schmidhuber,
2018; Wayne et al., 2018; Igl et al., 2018; Srinivas et al., 2018; Lee et al., 2019). Risi and Stanley
(2019) optimize discrete latents using evolutionary search. Parmas et al. (2019) combine reinforce
and reparameterization gradients. Most world model agents with image inputs have thus far been
limited to relatively simple control tasks (Watter et al., 2015; Ebert et al., 2017; Ha and Schmidhuber,
2018; Hafner et al., 2018; Zhang et al., 2019; Hafner et al., 2019). We explain the two model-based
approaches that were applied to Atari in detail below.

SimPLe The SimPLe agent (Kaiser et al., 2019) learns a video prediction model in pixel-space
and uses its predictions to train a PPO agent (Schulman et al., 2017a), as shown in Table 3. The
model directly predicts each frame from the previous four frames and receives an additional discrete
latent variable as input. The authors evaluate SimPLe on a subset of Atari games for 400k and 2M
environment steps, after which they report diminishing returns. Some recent model-free methods
have followed the comparison at 400k steps (Srinivas et al., 2020; Kostrikov et al., 2020). However,
the highest performance achieved in this data-efficient regime is a gamer normalized median score
of 0.28 (Kostrikov et al., 2020) that is far from human-level performance. Instead, we focus on the
well-established and competitive evaluation after 200M frames, where many successful model-free
algorithms are available for comparison.
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MuZero The MuZero agent (Schrittwieser et al., 2019) learns a sequence model of rewards and
values (Oh et al., 2017) to solve reinforcement learning tasks via Monte-Carlo Tree Search (MCTS;
Coulom, 2006; Silver et al., 2017). The sequence model is trained purely by predicting task-specific
information and does not incorporate explicit representation learning using the images, as shown
in Table 3. MuZero shows that with significant engineering effort and a vast computational budget,
planning can achieve impressive performance on several board games and deterministic Atari games.
However, MuZero is not publicly available, and it would require over 2 months to train an Atari
agent on one GPU. By comparison, DreamerV2 is a simple algorithm that achieves human-level
performance on Atari on a single GPU in 10 days, making it reproducible for many researchers.
Moreover, the advanced planning components of MuZero are complementary and could be applied to
the accurate world models learned by DreamerV2. DreamerV2 leverages the additional learning signal
provided by the input images, analogous to recent successes by semi-supervised image classification
(Chen et al., 2020; He et al., 2020; Grill et al., 2020).

5 DISCUSSION

We present DreamerV2, a model-based agent that achieves human-level performance on the Atari
200M benchmark by learning behaviors purely from the latent-space predictions of a separately
trained world model. Using a single GPU and a single environment instance, DreamerV2 outperforms
top model-free single-GPU agents Rainbow and IQN using the same computational budget and
training time. To develop DreamerV2, we apply several small modifications to the Dreamer agent
(Hafner et al., 2019). We confirm experimentally that learning a categorical latent space and using
KL balancing improves the performance of the agent. Moreover, we find the DreamerV2 relies on
image information for learning generally useful representations — its performance is not impacted
by whether the representations are especially learned for predicting rewards.

DreamerV2 serves as proof of concept, showing that model-based RL can outperform top model-free
algorithms on the most competitive RL benchmarks, despite the years of research and engineering
effort that modern model-free agents rest upon. Beyond achieving strong performance on individual
tasks, world models open avenues for efficient transfer and multi-task learning, sample-efficient
learning on physical robots, and global exploration based on uncertainty estimates.

Acknowledgements We thank our anonymous reviewers for their feedback and Nick Rhinehart for
an insightful discussion about the potential benefits of categorical latent variables.
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A SUMMARY OF MODIFICATIONS

To develop DreamerV2, we used the Dreamer agent (Hafner et al., 2019) as a starting point. This
subsection describes the changes that we applied to the agent to achieve high performance on the
Atari benchmark, as well as the changes that were tried but not found to increase performance and
thus were not not included in DreamerV2.

Summary of changes that were tried and were found to help:

• Categorical latents Using categorical latent states using straight-through gradients in the
world model instead of Gaussian latents with reparameterized gradients.

• Mixed actor gradients Combining Reinforce and dynamics backpropagation gradients for
learning the actor instead of dynamics backpropagation only.

• Policy entropy Regularizing the policy entropy for exploration both in imagination and during
data collection, instead of using external action noise during data collection.

• KL balancing Separately scaling the prior cross entropy and the posterior entropy in the KL
loss to encourage learning an accurate temporal prior, instead of using free nats.

• Model size Increasing the number of units or feature maps per layer of all model components,
resulting in a change from 13M parameters to 22M parameters.

• Layer norm Using layer normalization in the GRU that is used as part of the RSSM latent
transition model, instead of no normalization.

Summary of changes that were tried but were not shown to help:

• Binary latents Using a larger number of binary latents for the world model instead of using
categorical latents, which could have encouraged a more disentangled representation.

• Long-term entropy Including the policy entropy into temporal-difference loss of the value
function, so that the actor seeks out states with high action entropy beyond the planning horizon.

• Scheduling Scheduling the learning rate, KL scale, free bits. Only scheduling the entropy
regularizer and the amount of straight-through gradients for the policy was beneficial.

• Reinforce only Using only Reinforce gradients for the actor worked for most games but led to
lower performance on some games, possibly because of the high variance of Reinforce gradients.

Due to the large computational requirements, a comprehensive ablation study on this list of all
changes is unfortunately infeasible for us. This would require 55 tasks times 5 seeds for 10 days per
change to run, resulting in over 60,000 GPU hours per change. However, we include ablations for the
most important design choices in the main text of the paper.

16



B HYPER PARAMETERS

Name Symbol Value

World Model

Dataset size (FIFO) — 2 · 106
Batch size B 50
Sequence length L 50
Discrete latent dimensions — 32
Discrete latent classes — 32
RSSM number of units — 600
Image loss scale ηx 1/(64 · 64 · 1)
Reward loss scale ηr 1

Discount loss scale ηγ 1

Transition loss scale ηt 0.08

Entropy loss scale ηq 0.02

World model learning rate — 2 · 10−4
Reward transformation — tanh

Behavior

Imagination horizon H 15
Discount γ 0.995
λ-target parameter λ 0.95
Reinforce loss scale ηs 0.9

Dynamics backprop loss scale ηd 0.1 10M−→ 0.0

Actor entropy loss scale ηe 3 · 10−3 10M−→ 3 · 10−4
Actor learning rate — 4 · 10−5
Critic learning rate — 1 · 10−4
Slow critic update interval — 100

Common

Environment steps per update — 4
MPL number of layers — 4
MPL number of units — 400
Gradient clipping — 100
Adam epsilon ε 10−5

Decoupled weight decay — 10−6

Table B.1: Hyper parameters of the DreamerV2 agent on Atari. When tuning the agent on a different
task, we recommend searching over the actor entropy scale, the discount factor, and the transition and
entropy loss scales, while keeping the ratio of the two constant. The number of environment steps per
update should be reduced to achieve higher data-efficiency.
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Figure C.1: Atari agent comparison. The bars show the difference in gamer normalized scores at
200M steps. DreamerV2 outperforms the four model-free algorithms IQN, Rainbow, C51, and DQN
while learning behaviors purely by planning within a separately learned world model. DreamerV2
achieves higher or similar performance on all tasks besides Video Pinball, where we hypothesize that
the reconstruction loss does not focus on the ball that makes up only one pixel on the screen.
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Figure D.1: Comparison of DreamerV2 to the top model-free RL methods IQN and Rainbow. The
curves show mean and standard deviation over 5 seeds. IQN and Rainbow additionally average each
point over 10 evaluation episodes, explaining the smoother curves. DreamerV2 outperforms IQN and
Rainbow in all four aggregated scores. While IQN and Rainbow tend to succeed on the same tasks,
DreamerV2 shows a different performance profile.
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Figure E.1: Comparison of DreamerV2, Gaussian instead of categorical latent variables, and no
KL balancing. The curves show mean and standard deviation across two seeds. Categorical latent
variables and KL balancing both substantially improve performance across many of the tasks. The
importance of the two techniques is reflected in all four aggregated scores.
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Figure F.1: Comparison of leveraging image prediction, reward prediction, or both for learning the
model representations. While image gradients are crucial, reward gradients are not necessary for
our world model to succeed and their gradients can be stopped. Representations learned purely
from images are not biased toward previously encountered rewards and outperform reward-specific
representations on a number of tasks, suggesting that they may generalize better to unseen situations.
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Figure G.1: Comparison of leveraging Reinforce gradients, straight-through gradients, or both for
training the actor. While Reinforce gradients are crucial, straight-through gradients are not important
for most of the tasks. Nonetheless, combining both gradients yields substantial improvements on a
small number of games, most notably on Seaquest. We conjecture that straight-through gradients
have low variance and thus help the agent start learning, whereas Reinforce gradients are unbiased
and help converging to a better solution.
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Figure H.1: Comparison of DreamerV2 to a version without layer norm in the GRU and to training
from experience collected over time by a uniform random policy. We find that the benefit of layer
norm depends on the task at hand, increasing and decreasing performance on a roughly equal number
of tasks. The comparison to random data collection highlights which of the tasks require non-trivial
exploration, which can help guide future work on directed exploration using world models.
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I ATARI TASK SCORES

Baselines Algorithms
Task Random Gamer Record Rainbow IQN DreamerV2

Alien 229 7128 251916 3457 4961 3483
Amidar 6 1720 104159 2529 2393 2028
Assault 222 742 8647 3229 4885 7679
Asterix 210 8503 1000000 18367 10374 25669
Asteroids 719 47389 10506650 1484 1585 3064
Atlantis 12850 29028 10604840 802548 890214 989207
Bank Heist 14 753 82058 1075 1052 1043
Battle Zone 2360 37188 801000 40061 40953 31225
Beam Rider 364 16926 999999 6290 7130 12413
Berzerk 124 2630 1057940 833 648 751
Bowling 23 161 300 43 39 48
Boxing 0 12 100 99 98 87
Breakout 2 30 864 120 79 350
Centipede 2091 12017 1301709 6510 3728 6601
Chopper Command 811 7388 999999 12338 9282 2833
Crazy Climber 10780 35829 219900 145389 132738 141424
Demon Attack 152 1971 1556345 17071 15350 2775
Double Dunk -19 -16 21 22 21 22
Enduro 0 860 9500 2200 2203 2112
Fishing Derby -92 -39 71 42 45 60
Freeway 0 30 38 34 34 34
Frostbite 65 4335 454830 8208 7812 15622
Gopher 258 2412 355040 10641 12108 53853
Gravitar 173 3351 162850 1272 1347 3554
Hero 1027 30826 1000000 46675 36058 30287
Ice Hockey -11 1 36 0 -5 29
James Bond 7 29 45550 1097 3166 9269
Kangaroo 52 3035 1424600 12748 12602 11819
Krull 1598 2666 104100 4066 8844 9687
Kung Fu Master 258 22736 1000000 26475 31653 66410
Montezuma Revenge 0 4753 1219200 500 500 1932
Ms Pacman 307 6952 290090 3861 5218 5651
Name This Game 2292 8049 25220 9026 6639 14472
Phoenix 761 7243 4014440 8545 5102 13342
Pitfall -229 6464 114000 -20 -13 -1
Pong -21 15 21 20 20 19
Private Eye 25 69571 101800 21334 4181 158
Qbert 164 13455 2400000 17383 16730 162023
Riverraid 1338 17118 1000000 20756 15183 16249
Road Runner 12 7845 2038100 54662 58966 88772
Robotank 2 12 76 66 66 65
Seaquest 68 42055 999999 9903 17039 45898
Skiing -17098 -4337 -3272 -28708 -11162 -8187
Solaris 1236 12327 111420 1583 1684 883
Space Invaders 148 1669 621535 4131 4530 2611
Star Gunner 664 10250 77400 57909 80003 29219
Tennis -24 -8 21 0 23 23
Time Pilot 3568 5229 65300 12051 11666 32404
Tutankham 11 168 5384 239 251 238
Up N Down 533 11693 82840 34888 59944 648363
Venture 0 1188 38900 1529 1313 0
Video Pinball 16257 17668 89218328 466895 415833 22218
Wizard Of Wor 564 4756 395300 7879 5671 14531
Yars Revenge 3093 54577 15000105 45542 84144 20089
Zaxxon 32 9173 83700 14603 11023 18295

Table I.1: Atari individual scores. We select the 55 games that are common among most papers in the
literature. We compare the algorithms DreamerV2, IQN, and Rainbow to the baselines of random
actions, DeepMind’s human gamer, and the human world record. Algorithm scores are highlighted
in bold when they fall within 5% of the best algorithm. Note that these scores are already averaged
across seeds, whereas any aggregated scores must be computed before averaging across seeds.
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