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Abstract

Learned world models summarize an agent’s experience to facilitate learning
complex behaviors. While learning world models from high-dimensional sensory
inputs is becoming feasible through deep learning, there are many potential ways
for deriving behaviors from them. We present Dreamer, a reinforcement learning
agent that solves long-horizon tasks from images purely by latent imagination.
We efficiently learn behaviors by propagating analytic gradients of learned state
values back through trajectories imagined in the compact state space of a learned
world model. On 20 challenging visual control tasks, Dreamer exceeds existing
approaches in data-efficiency, computation time, and final performance.

1 INTRODUCTION

Value and Action Learned 
by Latent Imagination

Dataset of Experience

Learned Latent Dynamics

Figure 1: Dreamer
learns a world model
from past experience
and efficiently learns
farsighted behaviors in
its latent space by
backpropagating value
estimates back through
imagined trajectories.

Intelligent agents can achieve goals in complex environments even though
they never encounter the exact same situation twice. This ability requires
building representations of the world from past experience that enable
generalization to novel situations. World models offer an explicit way to
represent an agent’s knowledge about the world in a parametric model that
can make predictions about the future.
When the sensory inputs are high-dimensional images, latent dynamics
models can abstract observations to predict forward in compact state spaces
(Watter et al., 2015; Oh et al., 2017; Gregor et al., 2019). Compared to
predictions in image space, latent states have a small memory footprint that
enables imagining thousands of trajectories in parallel. Learning effective
latent dynamics models is becoming feasible through advances in deep
learning and latent variable models (Krishnan et al., 2015; Karl et al., 2016;
Doerr et al., 2018; Buesing et al., 2018).
Behaviors can be derived from dynamics models in many ways. Often,
imagined rewards are maximized with a parametric policy (Sutton, 1991;
Ha and Schmidhuber, 2018; Zhang et al., 2019) or by online planning
(Chua et al., 2018; Hafner et al., 2018). However, considering only rewards
within a fixed imagination horizon results in shortsighted behaviors (Wang
et al., 2019). Moreover, prior work commonly resorts to derivative-free
optimization for robustness to model errors (Ebert et al., 2017; Chua et al.,
2018; Parmas et al., 2019), rather than leveraging analytic gradients offered
by neural network dynamics (Henaff et al., 2019; Srinivas et al., 2018).
We present Dreamer, an agent that learns long-horizon behaviors from
images purely by latent imagination. A novel actor critic algorithm accounts
for rewards beyond the imagination horizon while making efficient use of
the neural network dynamics. For this, we predict state values and actions
in the learned latent space as summarized in Figure 1. The values optimize
Bellman consistency for imagined rewards and the policy maximizes the
values by propagating their analytic gradients back through the dynamics.
In comparison to actor critic algorithms that learn online or by experience
replay (Lillicrap et al., 2015; Mnih et al., 2016; Schulman et al., 2017;
Haarnoja et al., 2018; Lee et al., 2019), world models can interpolate past
experience and offer analytic gradients of multi-step returns for efficient
policy optimization.

∗Correspondence to: Danijar Hafner <mail@danijar.com>.
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Figure 2: Image observations for 5 of the 20 visual control tasks used in our experiments. The tasks
pose a variety of challenges including contact dynamics, sparse rewards, many degrees of freedom,
and 3D environments. Several of these tasks could previously not be solved through world models.

The key contributions of this paper are summarized as follows:
• Learning long-horizon behaviors by latent imagination Model-based agents can be short-

sighted if they use a finite imagination horizon. We approach this limitation by predicting both
actions and state values. Training purely by imagination in a latent space lets us efficiently learn
the policy by propagating analytic value gradients back through the latent dynamics.

• Empirical performance for visual control We pair Dreamer with existing representation
learning methods and evaluate it on the DeepMind Control Suite with image inputs, illustrated in
Figure 2. Using the same hyper parameters for all tasks, Dreamer exceeds previous model-based
and model-free agents in terms of data-efficiency, computation time, and final performance.

2 CONTROL WITH WORLD MODELS

Reinforcement learning We formulate visual control as a partially observable Markov decision
process (POMDP) with discrete time step t ∈ [1;T ], continuous vector-valued actions at ∼ p(at |
o≤t, a<t) generated by the agent, and high-dimensional observations and scalar rewards ot, rt ∼
p(ot, rt | o<t, a<t) generated by the unknown environment. The goal is to develop an agent that
maximizes the expected sum of rewards Ep

(∑T
t=1 rt

)
. Figure 2 shows a selection of our tasks.

Agent components The classical components of agents that learn in imagination are dynamics
learning, behavior learning, and environment interaction (Sutton, 1991). In the case of Dreamer,
the behavior is learned by predicting hypothetical trajectories in the compact latent space of the
world model. As outlined in Figure 3 and detailed in Algorithm 1, Dreamer performs the following
operations throughout the agent’s life time, either interleaved or in parallel:
• Learning the latent dynamics model from the dataset of past experience to predict future re-

wards from actions and past observations. Any learning objective for the world model can be
incorporated with Dreamer. We review existing methods for learning latent dynamics in Section 4.

• Learning action and value models from predicted latent trajectories, as described in Section 3.
The value model optimizes Bellman consistency for imagined rewards and the action model is
updated by propagating gradients of value estimates back through the neural network dynamics.

• Executing the learned action model in the world to collect new experience for growing the dataset.
Latent dynamics Dreamer uses a latent dynamics model that consists of three components. The
representation model encodes observations and actions to create continuous vector-valued model
states st with Markovian transitions (Watter et al., 2015; Zhang et al., 2019; Hafner et al., 2018). The
transition model predicts future model states without seeing the corresponding observations that will
later cause them. The reward model predicts the rewards given the model states,

Representation model: p(st | st−1, at−1, ot)
Transition model: q(st | st−1, at−1)

Reward model: q(rt | st).
(1)

We use p for distributions that generate samples in the real environment and q for their approximations
that enable latent imagination. Specifically, the transition model lets us predict ahead in the compact
latent space without having to observe or imagine the corresponding images. This results in a low
memory footprint and fast predictions of thousands of imagined trajectories in parallel.
The model mimics a non-linear Kalman filter (Kalman, 1960), latent state space model, or HMM
with real-valued states. However, it is conditioned on actions and predicts rewards, allowing the agent
to imagine the outcomes of potential action sequences without executing them in the environment.
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Figure 3: Components of Dreamer. (a) From the dataset of past experience, the agent learns to encode
observations and actions into compact latent states ( ), for example via reconstruction, and predicts
environment rewards ( ). (b) In the compact latent space, Dreamer predicts state values ( ) and
actions ( ) that maximize future value predictions by propagating gradients back through imagined
trajectories. (c) The agent encodes the history of the episode to compute the current model state and
predict the next action to execute in the environment. See Algorithm 1 for pseudo code of the agent.

3 LEARNING BEHAVIORS BY LATENT IMAGINATION

Dreamer learns long-horizon behaviors in the compact latent space of a learned world model by
efficiently leveraging the neural network latent dynamics. For this, we propagate stochastic gradients
of multi-step returns through neural network predictions of actions, states, rewards, and values using
reparameterization. This section describes the main contribution of our paper.
Imagination environment The latent dynamics define a Markov decision process (MDP; Sutton,
1991) that is fully observed because the compact model states st are Markovian. We denote imagined
quantities with τ as the time index. Imagined trajectories start at the true model states st of observation
sequences drawn from the agent’s past experience. They follow predictions of the transition model
sτ ∼ q(sτ | sτ−1, aτ−1), reward model rτ ∼ q(rτ | sτ ), and a policy aτ ∼ q(aτ | sτ ). The
objective is to maximize expected imagined rewards Eq

(∑∞
τ=t γ

τ−trτ
)

with respect to the policy.

Algorithm 1: Dreamer

Initialize dataset D with S random seed episodes.
Initialize neural network parameters θ, φ, ψ randomly.
while not converged do

for update step c = 1..C do
// Dynamics learning

Draw B data sequences {(at, ot, rt)}k+Lt=k ∼ D.
Compute model states st ∼ pθ(st | st−1, at−1, ot).
Update θ using representation learning.

// Behavior learning

Imagine trajectories {(sτ , aτ )}t+Hτ=t from each st.
Predict rewards E

(
qθ(rτ | sτ )

)
and values vψ(sτ ).

Compute value estimates Vλ(sτ ) via Equation 6.
Update φ← φ+ α∇φ

∑t+H
τ=t Vλ(sτ ).

Update ψ← ψ− α∇ψ
∑t+H
τ=t

1
2

∥∥vψ(sτ )9Vλ(sτ )
∥∥2.

// Environment interaction
o1 ← env.reset()
for time step t = 1..T do

Compute st ∼ pθ(st | st−1, at−1, ot) from history.
Compute at ∼ qφ(at | st) with the action model.
Add exploration noise to action.
rt, ot+1 ← env.step(at).

Add experience to dataset D ← D ∪ {(ot, at, rt)Tt=1}.

Model components
Representation pθ(st | st-1, at-1, ot)
Transition qθ(st | st-1, at-1)

Reward qθ(rt | st)
Action qφ(at | st)
Value vψ(st)

Hyper parameters
Seed episodes S

Collect interval C

Batch size B

Sequence length L

Imagination horizon H

Learning rate α

3
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Figure 4: Imagination horizons. We compare the final performance of Dreamer, learning an action
model without value prediction, and online planning using PlaNet. Learning a state value model to
estimate rewards beyond the imagination horizon makes Dreamer more robust to the horizon length.
The agents use pixel reconstruction for representation learning and an action repeat of R = 2.

Action and value models Consider imagined trajectories with a finite horizon H . Dreamer uses
an actor critic approach to learn behaviors that consider rewards beyond the horizon. We learn an
action model and a value model in the latent space of the world model for this. The action model
implements the policy and aims to predict actions that solve the imagination environment. The value
model estimates the expected imagined rewards that the action model achieves from each state sτ ,

Action model: aτ ∼ qφ(aτ | sτ )

Value model: vψ(sτ ) ≈ Eq(·|sτ )
(∑t+H

τ=t γ
τ−trτ

)
.

(2)

The action and value models are trained cooperatively as typical in policy iteration: the action model
aims to maximize an estimate of the value, while the value model aims to match an estimate of the
value that changes as the action model changes.

We use dense neural networks for the action and value models with parameters φ and ψ, respectively.
The action model outputs a tanh-transformed Gaussian (Haarnoja et al., 2018) with sufficient statistics
predicted by the neural network. This allows for reparameterized sampling (Kingma and Welling,
2013; Rezende et al., 2014) that views sampled actions as deterministically dependent on the neural
network output, allowing us to backpropagate analytic gradients through the sampling operation,

aτ = tanh
(
µφ(sτ ) + σφ(sτ ) ε

)
, ε ∼ Normal(0, I). (3)

Value estimation To learn the action and value models, we need to estimate the state values
of imagined trajectories {sτ , aτ , rτ}t+Hτ=t . These trajectories branch off of the model states st of
sequence batches drawn from the agent’s dataset of experience and predict forward for the imagination
horizon H using actions sampled from the action model. State values can be estimated in multiple
ways that trade off bias and variance (Sutton and Barto, 2018),

VR(sτ )
.
= Eqθ,qφ

( t+H∑
n=τ

rn

)
, (4)

Vk
N(sτ )

.
= Eqθ,qφ

( h−1∑
n=τ

γn−τrn + γh−τvψ(sh)

)
with h = min(τ + k, t+H), (5)

Vλ(sτ )
.
= (1− λ)

H−1∑
n=1

λn−1Vn
N(sτ ) + λH−1VH

N (sτ ), (6)

where the expectations are estimated under the imagined trajectories. VR simply sums the rewards
from τ until the horizon and ignores rewards beyond it. This allows learning the action model without
a value model, an ablation we compare to in our experiments. Vk

N estimates rewards beyond k steps
with the learned value model. Dreamer uses Vλ, an exponentially-weighted average of the estimates
for different k to balance bias and variance. Figure 4 shows that learning a value model in imagination
enables Dreamer to solve long-horizon tasks while being robust to the imagination horizon. The
experimental details and results on all tasks are described in Section 6.
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Figure 5: Reconstructions of long-term predictions. We apply the representation model to the first 5
images of two hold-out trajectories and predict forward for 45 steps using the latent dynamics, given
only the actions. The recurrent state space model (RSSM; Hafner et al., 2018) performs accurate
long-term predictions, enabling Dreamer to learn successful behaviors in a compact latent space.

Learning objective To update the action and value models, we first compute the value estimates
Vλ(sτ ) for all states sτ along the imagined trajectories. The objective for the action model qφ(aτ | sτ )
is to predict actions that result in state trajectories with high value estimates. The objective for the
value model vψ(sτ ), in turn, is to regress the value estimates,

max
φ

Eqθ,qφ

( t+H∑
τ=t

Vλ(sτ )

)
, (7) min

ψ
Eqθ,qφ

( t+H∑
τ=t

1

2

∥∥∥vψ(sτ )−Vλ(sτ ))
∥∥∥2). (8)

The value model is updated to regress the targets, around which we stop the gradient as typical
(Sutton and Barto, 2018). The action model uses analytic gradients through the learned dynamics
to maximize the value estimates. To understand this, we note that the value estimates depend on
the reward and value predictions, which depend on the imagined states, which in turn depend on
the imagined actions. Since all steps are implemented as neural networks, we analytically compute
∇φEqθ,qφ

(∑t+H
τ=t Vλ(sτ )

)
by stochastic backpropagation (Kingma and Welling, 2013; Rezende

et al., 2014). We use reparameterization for continuous actions and latent states and straight-through
gradients (Bengio et al., 2013) for discrete actions. The world model is fixed while learning behaviors.
In tasks with early termination, the world model also predicts the discount factor from each latent
state to weigh the time steps in Equations 7 and 8 by the cumulative product of the predicted discount
factors, so terms are weighted down based on how likely the imagined trajectory would have ended.
Comparison to actor critic methods Agents using Reinforce gradients (Williams, 1992), such as
A3C and PPO (Mnih et al., 2016; Schulman et al., 2017), employ value baselines to reduce gradient
variance, while Dreamer backpropagates through the value model. This is similar to deterministic
or reparameterized actor critics (Silver et al., 2014), such as DDPG and SAC (Lillicrap et al., 2015;
Haarnoja et al., 2018). However, these do not leverage gradients through transitions and only
maximize immediate Q-values. MVE and STEVE (Feinberg et al., 2018; Buckman et al., 2018)
extend them to multi-step Q-learning with learned dynamics to provide more accurate Q-value targets.
We predict state values, which is sufficient for policy optimization since we backpropagate through
the dynamics. Refer to Section 5 for a more detailed comparison to related work.

4 LEARNING LATENT DYNAMICS

Learning behaviors in imagination requires a world model that generalizes well. We focus on latent
dynamics models that predict forward in a compact latent space, facilitating long-term predictions
and allowing the agent to imagine thousands of trajectories in parallel. Several objectives for learning
representations for control have been proposed (Watter et al., 2015; Jaderberg et al., 2016; Oord
et al., 2018; Eslami et al., 2018). We review three approaches for learning representations to use with
Dreamer: reward prediction, image reconstruction, and contrastive estimation.
Reward prediction Latent imagination requires a representation model p(st | st−1, at−1, ot),
transition model q(st | st−1, at−1, ), and reward model q(rt | st), as described in Section 2. In
principle, this could be achieved by simply learning to predict future rewards given actions and
past observations (Oh et al., 2017; Gelada et al., 2019; Schrittwieser et al., 2019). With a large and
diverse dataset, such representations should be sufficient for solving a control task. However, with a
finite dataset and especially when rewards are sparse, learning about observations that correlate with
rewards is likely to improve the world model (Jaderberg et al., 2016; Gregor et al., 2019).
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Figure 6: Performance comparison to existing methods. Dreamer inherits the data-efficiency of
PlaNet while exceeding the asymptotic performance of the best model-free agents. After 5 × 106

environment steps, Dreamer reaches an average performance of 823 across tasks, compared to PlaNet
at 332 and the top model-free D4PG agent at 786 after 108 steps. Results are averages over 5 seeds.

Reconstruction We first describe the world model used by PlaNet (Hafner et al., 2018) that learns
latent dynamics by reconstructing images as shown in Figure 3a. The world model consists of the
following components, where the observation model is only used to provide a learning signal,

Representation model: pθ(st | st−1, at−1, ot)
Observation model: qθ(ot | st)
Reward model: qθ(rt | st)
Transition model: qθ(st | st−1, at−1).

(9)

The components are optimized jointly to increase the variational lower bound (ELBO; Jordan et al.,
1999) or more generally the variational information bottleneck (VIB; Tishby et al., 2000; Alemi et al.,
2016). As derived in Appendix B, the bound includes reconstruction terms for observations and
rewards and a KL regularizer. The expectation is taken under the dataset and representation model,

JREC
.
= Ep

(∑
t

(
J tO + J tR + J tD

))
+ const J tO

.
= ln q(ot | st)

J tR
.
= ln q(rt | st) J tD

.
= −βKL

(
p(st | st−1, at−1, ot)

∥∥ q(st | st−1, at−1)
)
.

(10)

We implement the transition model as a recurrent state space model (RSSM; Hafner et al., 2018), the
representation model by combining the RSSM with a convolutional neural network (CNN; LeCun
et al., 1989) applied to the image observation, the observation model as a transposed CNN, and
the reward model as a dense network. The combined parameter vector θ is updated by stochastic
backpropagation (Kingma and Welling, 2013; Rezende et al., 2014). Figure 5 shows video predictions
of this model. We refer to Appendix A and Hafner et al. (2018) model details.

Contrastive estimation Predicting pixels can require high model capacity. We can also encourage
mutual information between model states and observations by instead predicting the states from the
images (Guo et al., 2018). This replaces the observation model with a state model,

State model: qθ(st | ot). (11)

While the reconstruction objective used the fact that the observation marginal is a constant, we
now face the state marginal. As shown in Appendix B, this can be estimated via noise contrastive
estimation (NCE; Gutmann and Hyvärinen, 2010; Oord et al., 2018) by averaging the state model
over observations o′ of the current sequence batch. Intuitively, q(st | ot) makes the state predictable
from the current image while ln

∑
o′ q(st | o′) keeps it diverse to prevent collapse,

JNCE
.
= E

(∑
t

(
J tS + J tR + J tD

))
J tS

.
= ln q(st | ot)− ln

(∑
o′

q(st | o′)
)
. (12)

We implement the state model as a CNN and again optimize the bound with respect to the combined
parameter vector θ using stochastic backpropagation. While avoiding pixel prediction, the amount of
information this bound can extract efficiently is limited (McAllester and Statos, 2018). We empirically
compare reward, reconstruction, and contrastive objectives in our experiments in Figure 8.
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Figure 7: Dreamer succeeds at visual control tasks that require long-horizon credit assignment, such
as the acrobot and hopper tasks. Optimizing only imagined rewards within the horizon via an action
model or by online planning yields shortsighted behaviors that only succeed in reactive tasks, such as
in the walker domain. The performance on all 20 tasks is summarized in Figure 6 and training curves
are shown in Appendix D. See Tassa et al. (2018) for performance curves of D4PG and A3C.

5 RELATED WORK

Prior works learn latent dynamics for visual control by derivative-free policy learning or online
planning, augment model-free agents with multi-step predictions, or use analytic gradients of Q-
values or multi-step rewards, often for low-dimensional tasks. In comparison, Dreamer uses analytic
gradients to efficiently learn long-horizon behaviors for visual control purely by latent imagination.

Control with latent dynamics E2C (Watter et al., 2015) and RCE (Banijamali et al., 2017) embed
images to predict forward in a compact space to solve simple tasks. World Models (Ha and Schmid-
huber, 2018) learn latent dynamics in a two-stage process to evolve linear controllers in imagination.
PlaNet (Hafner et al., 2018) learns them jointly and solves visual locomotion tasks by latent online
planning. SOLAR (Zhang et al., 2019) solves robotic tasks via guided policy search in latent space.
I2A (Weber et al., 2017) hands imagined trajectories to a model-free policy, while Lee et al. (2019)
and Gregor et al. (2019) learn belief representations to accelerate model-free agents.

Imagined multi-step returns VPN (Oh et al., 2017), MVE (Feinberg et al., 2018), and STEVE
(Buckman et al., 2018) learn dynamics for multi-step Q-learning from a replay buffer. AlphaGo
(Silver et al., 2017) combines predictions of actions and state values with planning, assuming access
to the true dynamics. Also assuming access to the dynamics, POLO (Lowrey et al., 2018) plans
to explore by learning a value ensemble. MuZero (Schrittwieser et al., 2019) learns task-specific
reward and value models to solve challenging tasks but requires large amounts of experience. PETS
(Chua et al., 2018), VisualMPC (Ebert et al., 2017), and PlaNet (Hafner et al., 2018) plan online
using derivative-free optimization. POPLIN (Wang and Ba, 2019) improves over online planning by
self-imitation. Piergiovanni et al. (2018) learn robot policies by imagination with a latent dynamics
model. Planning with neural network gradients was shown on small problems (Schmidhuber, 1990;
Henaff et al., 2018) but has been challenging to scale (Parmas et al., 2019).

Analytic value gradients DPG (Silver et al., 2014), DDPG (Lillicrap et al., 2015), and SAC
(Haarnoja et al., 2018) leverage gradients of learned immediate action values to learn a policy by
experience replay. SVG (Heess et al., 2015) reduces the variance of model-free on-policy algorithms
by analytic value gradients of one-step model predictions. Concurrent work by Byravan et al. (2019)
uses latent imagination with deterministic models for navigation and manipulation tasks. ME-TRPO
(Kurutach et al., 2018) accelerates an otherwise model-free agent via gradients of predicted rewards
for proprioceptive inputs. DistGBP (Henaff et al., 2017; 2019) uses model gradients for online
planning in simple tasks.
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Figure 8: Comparison of representation learning objectives to be used with Dreamer. Pixel recon-
struction performs best for the majority of tasks. The contrastive objective solves about half of the
tasks, while predicting rewards alone was not sufficient in our experiments. The results suggest that
future developments in learning representations are likely to translate into improved task performance
for Dreamer. The performance curves for all tasks are included in Appendix E.

6 EXPERIMENTS

We experimentally evaluate Dreamer on a variety of control tasks. We designed the experiments
to compare Dreamer to current best methods in the literature, and to evaluate its ability to solve
tasks with long horizons, continuous actions, discrete actions, and early termination. We further
compare the orthogonal choice of learning objective for the world model. The source code for all our
experiments and videos of Dreamer are available at https://danijar.com/dreamer.

Control tasks We evaluate Dreamer on 20 visual control tasks of the DeepMind Control Suite
(Tassa et al., 2018), illustrated in Figure 2. These tasks pose a variety of challenges, including sparse
rewards, contact dynamics, and 3D scenes. We selected the tasks on which Tassa et al. (2018) report
non-zero performance from image inputs. Agent observations are images of shape 64 × 64 × 3,
actions range from 1 to 12 dimensions, rewards range from 0 to 1, episodes last for 1000 steps and
have randomized initial states. We use a fixed action repeat ofR = 2 across tasks. We further evaluate
the applicability of Dreamer to discrete actions and early termination on a subset of Atari games
(Bellemare et al., 2013) and DeepMind Lab levels (Beattie et al., 2016) as detailed in Appendix C.

Implementation Our implementation uses TensorFlow Probability (Dillon et al., 2017). We use a
single Nvidia V100 GPU and 10 CPU cores for each training run. The training time for our Dreamer
implementation is about 3 hours per 106 environment steps on the control suite, compared to 11 hours
for online planning using PlaNet, and the 24 hours used by D4PG to reach similar performance. We
use the same hyper parameters across all continuous tasks, and similarly across all discrete tasks,
detailed in Appendix A. The world models are learned via reconstruction unless specified.

Baseline methods The highest reported performance on the continuous tasks is achieved by D4PG
(Barth-Maron et al., 2018), an improved variant of DDPG (Lillicrap et al., 2015) that uses distributed
collection, distributional Q-learning, multi-step returns, and prioritized replay. We include the scores
for D4PG with pixel inputs and A3C (Mnih et al., 2016) with state inputs from Tassa et al. (2018).
PlaNet (Hafner et al., 2018) learns the same world model as Dreamer and selects actions via online
planning without an action model and drastically improves over D4PG and A3C in data efficiency. We
re-run PlaNet with R = 2 for a unified experimental setup. For Atari, we show the final performance
of SimPLe (Kaiser et al., 2019), DQN (Mnih et al., 2015) and Rainbow (Hessel et al., 2018) reported
by Castro et al. (2018), and for DeepMind Lab that of IMPALA (Espeholt et al., 2018) as a guideline.
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Performance To evaluate the performance of Dreamer, we compare it to state-of-the-art reinforce-
ment learning agents. The results are summarized in Figure 6. With an average score of 823 across
tasks after 5× 106 environment steps, Dreamer exceeds the performance of the strong model-free
D4PG agent that achieves an average of 786 within 108 environment steps. At the same time, Dreamer
inherits the data-efficiency of PlaNet, confirming that the learned world model can help to generalize
from small amounts of experience. The empirical success of Dreamer shows that learning behaviors
by latent imagination with world models can outperform top methods based on experience replay.
Long horizons To investigate its ability to learn long-horizon behaviors, we compare Dreamer to
alternatives for deriving behaviors from the world model at various horizon lengths. For this, we
learn an action model to maximize imagined rewards without a value model and compare to online
planning using PlaNet. Figure 4 shows the final performance for different imagination horizons,
confirming that the value model makes Dreamer more robust to the horizon and performs well even
for short horizons. Performance curves for all 19 tasks with horizon of 20 are shown in Appendix D,
where Dreamer outperforms the alternatives on 16 of 20 tasks, with 4 ties.
Representation learning Dreamer can be used with any differentiable dynamics model that pre-
dicts future rewards given actions and past observations. Since the representation learning objective
is orthogonal to our algorithm, we compare three natural choices described in Section 4: pixel recon-
struction, contrastive estimation, and pure reward prediction. Figure 8 shows clear differences in task
performance for different representation learning approaches, with pixel reconstruction outperform-
ing contrastive estimation on most tasks. This suggests that future improvements in representation
learning are likely to translate to higher task performance with Dreamer. Reward prediction alone
was not sufficient in our experiments. Further ablations are included in the appendix of the paper.

7 CONCLUSION

We present Dreamer, an agent that learns long-horizon behaviors purely by latent imagination. For
this, we propose an actor critic method that optimizes a parametric policy by propagating analytic
gradients of multi-step values back through learned latent dynamics. Dreamer outperforms previous
methods in data-efficiency, computation time, and final performance on a variety of challenging
continuous control tasks with image inputs. We further show that Dreamer is applicable to tasks with
discrete actions and early episode termination. Future research on representation learning can likely
scale latent imagination to environments of higher visual complexity.
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Geoffrey Hinton, Shane Gu, Adam Kosiorek, Brandon Amos, Jacob Buckman, Calvin Luo, and
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A HYPER PARAMETERS

Model components We use the convolutional encoder and decoder networks from Ha and Schmid-
huber (2018), the RSSM of Hafner et al. (2018), and implement all other functions as three dense
layers of size 300 with ELU activations (Clevert et al., 2015). Distributions in latent space are
30-dimensional diagonal Gaussians. The action model outputs a tanh mean scaled by a factor of
5 and a softplus standard deviation for the Normal distribution that is then transformed using tanh
(Haarnoja et al., 2018). The scaling factor allows the agent to saturate the action distribution.
Learning updates We draw batches of 50 sequences of length 50 to train the world model, value
model, and action model models using Adam (Kingma and Ba, 2014) with learning rates 6× 10−4,
8× 10−5, 8× 10−5, respectively and scale down gradient norms that exceed 100. We do not scale
the KL regularizers (β = 1) but clip them below 3 free nats as in PlaNet. The imagination horizon is
H = 15 and the same trajectories are used to update both action and value models. We compute the
Vλ targets with γ = 0.99 and λ = 0.95. We did not find latent overshooting for learning the model,
an entropy bonus for the action model, or target networks for the value model necessary.
Environment interaction The dataset is initialized with S = 5 episodes collected using random
actions. We iterate between 100 training steps and collecting 1 episode by executing the predicted
mode action with Normal(0, 0.3) exploration noise. Instead of manually selecting the action repeat
for each environment as in Hafner et al. (2018) and Lee et al. (2019), we fix it to 2 for all environments.
See Figure 12 for an assessment of the robustness to different action repeat values.
Discrete control For experiments on Atari games and DeepMind Lab levels, the action model
predicts the logits of a categorical distribution. We use straight-through gradients for the sampling
step during latent imagination. The action noise is epsilon greedy where ε is linearly scheduled from
0.4→ 0.1 over the first 200, 000 gradient steps. To account for the higher complexity of these tasks,
we use an imagination horizon of H = 10, scale the KL regularizers by β = 0.1, and bound rewards
using tanh. We predict the discount factor from the latent state with a binary classifier that is trained
towards the soft labels of 0 and γ.
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B DERIVATIONS

We define the information bottleneck objective (Tishby et al., 2000) for latent dynamics models,

max I(s1:T ; (o1:T , r1:T ) | a1:T )− β I(s1:T , i1:T | a1:T ), (13)

where β is scalar and it are dataset indices that determine the observations p(ot | it)
.
= δ(ot − ōt) as

in Alemi et al. (2016).
Maximizing the objective leads to model states that can predict the sequence of observations and
rewards while limiting the amount of information extracted at each time step. This encourages the
model to reconstruct each image by relying on information extracted at preceeding time steps to the
extent possible, and only accessing additional information from the current image when necessary.
As a result, the information regularizer encourages the model to learn long-term dependencies.
For the generative objective, we lower bound the first term using the non-negativity of the KL
divergence and drop the marginal data probability as it does not depend on the representation model,

I(s1:T ; (o1:T , r1:T ) | a1:T )

= Ep(o1:T ,r1:T ,s1:T ,a1:T )

(∑
t

ln p(o1:T , r1:T | s1:T , a1:T )− ln p(o1:T , r1:T | a1:T )
const

)
+
= E

(∑
t

ln p(o1:T , r1:T | s1:T , a1:T )
)

≥ E
(∑

t

ln p(o1:T , r1:T | s1:T , a1:T )
)
−KL

(
p(o1:T , r1:T | s1:T , a1:T )

∥∥∥ ∏
t

q(ot | st)q(rt | st)
)

= E
(∑

t

ln q(ot | st) + ln q(rt | st)
)
.

(14)
For the contrastive objective, we subtract the constant marginal probability of the data under the
variational encoder, apply Bayes rule, and use the InfoNCE mini-batch bound (Poole et al., 2019),

E
(

ln q(ot | st) + ln q(rt | st)
)

+
= E

(
ln q(ot | st)− ln q(ot) + ln q(rt | st)

)
= E

(
ln q(st | ot)− ln q(st) + ln q(rt | st)

)
≥ E

(
ln q(st | ot)− ln

∑
o′

q(st | o′) + ln q(rt | st)
)
.

(15)

For the second term, we use the non-negativity of the KL divergence to obtain an upper bound,

I(s1:T ; i1:T | a1:T )

= Ep(o1:T ,r1:T ,s1:T ,a1:T ,i1:T )

(∑
t

ln p(st | st−1, at−1, it)− ln p(st | st−1, at−1)
)

= E
(∑

t

ln p(st | st−1, at−1, ot)− ln p(st | st−1, at−1)
)

≤ E
(∑

t

ln p(st | st−1, at−1, ot)− ln q(st | st−1, at−1)
)

= E
(∑

t

KL
(
p(st | st−1, at−1, ot)

∥∥ q(st | st−1, at−1)
))
.

(16)

This lower bounds the objective.
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C DISCRETE CONTROL

We evaluate Dreamer on a subset of tasks with discrete actions from the Atari suite (Bellemare et al.,
2013) and DeepMind Lab (Beattie et al., 2016). While agents that purely learn through world models
are not yet competitive in these domains (Kaiser et al., 2019), the tasks offer a diverse test bed with
visual complexity, sparse rewards, and early termination. Agents observe 64× 64× 3 images and
select one of between 3 and 18 actions. For Atari, we follow the evaluation protocol of Machado
et al. (2018) with sticky actions. Refer to Figure 9 for these experiments.

0.5 1.0 1.5
1e7

0

50

100

Ep
iso

de
 R

etu
rn

Boxing

1 2 3 4
1e7

0

5000

10000

Choppercommand

2 4 6
1e7

20

0

20

Doubledunk

1 2 3 4
1e7

100

50

0

Fishingderby

2 4 6
1e7

20

15

10

5

0

Ep
iso

de
 R

etu
rn

Ice Hockey

0.5 1.0 1.5 2.0
1e7

0

5000

10000

Kangaroo

0.5 1.0 1.5
1e7

0

2500

5000

7500

Krull

0.5 1.0 1.5 2.0
1e7

0

10000

20000

30000

40000
Kungfumaster

0.5 1.0 1.5
1e7

0

1000

2000

3000

4000

Ep
iso

de
 R

etu
rn

Mspacman

1 2 3 4
1e7

2500

5000

7500

10000

Namethisgame

2 4 6
1e7

20

10

0

10

Pong

0 1 2 3 4 5
1e7

0

100

200

Tutankham

2 4 6
Environment Steps 1e7

0

50000

100000

150000

200000

Ep
iso

de
 R

etu
rn

Up N Down

0.5 1.0 1.5
Environment Steps 1e7

0

5000

10000

15000
Zaxxon

0.25 0.50 0.75 1.00 1.25 1.50
Environment Steps 1e7

0.0

2.5

5.0

7.5

10.0
Collect Good Objects

1 2 3 4 5
Environment Steps 1e7

0

20

40
Watermaze

Dreamer SimPLe (1e5 steps) DQN (2e8 steps) Rainbow (2e8 steps) IMPALA (1e10 steps) Random

Figure 9: Performance of Dreamer in environments with discrete actions and early termination.
Dreamer learns successful behaviors on this subset of Atari games and the object collection level of
DMLab. We highlight representation learning for these environments as a direction of future work
that could enable competitive performance across all Atari games and DMLab levels using Dreamer.
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D BEHAVIOR LEARNING
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Figure 10: Comparison of action selection schemes on the continuous control tasks of the DeepMind
Control Suite from pixel inputs. The lines show mean scores over environment steps and the shaded
areas show the standard deviation across 5 seeds. We compare Dreamer that learns both actions
and values in imagination, to only learning actions in imagination, and Planet that selects actions
by online planning instead of learning a policy. The baselines include the top model-free algorithm
D4PG, the well-known A3C agent, and the hybrid SLAC agent.
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E REPRESENTATION LEARNING
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Figure 11: Comparison of representation learning methods for Dreamer. The lines show mean scores
and the shaded areas show the standard deviation across 5 seeds. We compare generating both
images and rewards, generating rewards and using a contrastive loss to learn about the images, and
only predicting rewards. Image reconstruction provides the best learning signal across most of the
tasks, followed by the contrastive objective. Learning purely from rewards was not sufficient in our
experiments and might require larger amounts of experience.
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F ACTION REPEAT
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Figure 12: Robustness of Dreamer to different control frequencies. Reinforcement learning methods
can be sensitive to this hyper parameter, which could be amplified when learning dynamics models
at the control frequency of the environment. For this experiment, we train Dreamer with different
amounts of action repeat. The areas show one standard deviation across 2 seeds. We used a previous
hyper parameter setting for this experiment. We find that a value of R = 2 works best across tasks.
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G CONTINUOUS CONTROL SCORES

A3C D4PG PlaNet1 Dreamer

Input modality proprio pixels pixels pixels
Environment steps 108 108 5× 106 5× 106

Acrobot Swingup 41.90 91.70 3.21 365.26
Cartpole Balance 951.60 992.80 452.56 979.56
Cartpole Balance Sparse 857.40 1000.00 164.74 941.84
Cartpole Swingup 558.40 862.00 312.56 833.66
Cartpole Swingup Sparse 179.80 482.00 0.64 812.22
Cheetah Run 213.90 523.80 496.12 894.56
Cup Catch 104.70 980.50 455.98 962.48
Finger Spin 129.40 985.70 495.25 498.88
Finger Turn Easy 167.30 971.40 451.22 825.86
Finger Turn Hard 88.70 966.00 312.55 891.38
Hopper Hop 0.50 242.00 0.37 368.97
Hopper Stand 27.90 929.90 5.96 923.72
Pendulum Swingup 48.60 680.90 3.27 833.00
Quadruped Run − − 280.45 888.39
Quadruped Walk − − 238.90 931.61
Reacher Easy 95.60 967.40 468.50 935.08
Reacher Hard 39.70 957.10 187.02 817.05
Walker Run 191.80 567.20 626.25 824.67
Walker Stand 378.40 985.20 759.19 977.99
Walker Walk 311.00 968.30 944.70 961.67

Average 243.70 786.32 332.97 823.39

1We re-run PlaNet with fixed action repeat of R = 2 to not tune the this value for each of the 20 tasks. As a
result, the scores differ from Hafner et al. (2018).
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