GUILLAUME BARNIER

Phone: +1-720-838-1835 • Email: <u>barnier@gmail.com</u> • Website: <u>gbarnier.github.io</u>

• GitHub: github.com/gbarnier

SUMMARY

- > Expert in machine learning, scientific computing for applied mathematics, and optimization of highdimension nonlinear inverse problems
- > Strong interest and knowledge in reinforcement learning algorithms
- > Excellent high-performance computing (HPC)skills with deep knowledge of graphics processing units (GPU) programming with C++/CUDA (8 years of experience)
- > Won the 2019 "Best Paper Presented by a Student at the Annual Meeting" award from the Society of Exploration Geophysicists (SEG)

ACADEMIC EXPERIENCE

Stanford University, Ph.D. in Geophysics (GPA 3.960)	Exp. 2021
Colorado School of Mines, MSc. in Geophysics (GPA 4.000)	2013
Télécom Paris University, MSc. in Electrical Engineering (GPA 3.600)	2007

MACHINE LEARNING SKILLS

- > ML coursework: Reinforcement Learning (CS 234), Deep Learning (CS 230), Machine Learning (CS 229),
- > Mathematics coursework: Stochastic Processes (MATH 136), Stochastic Differential Equations (MATH 236)
- > Programming: C++, CUDA, Fortran, pybind11, Unix, MPI, Dask, HTML, CSS
- > Deep Learning Frameworks: Python, NumPy, PyTorch, some use of Keras and TensorFlow

RESEARCH EXPERIENCE

Deep Learning, Computer Vision and Healthcare

- > Stanford Radiology and Neuroimaging Department (Prof. E. Tong)
- Jan. 2021 Present
- Initiated and led a project to predict brain tissue damage for ischemic stroke patients using deep supervised learning based on convolutional neural nets (CNN) and 4D computed tomography perfusion (CTP) data
- Developed an approach to bypass the use of costly and potentially unreliable commercial software packages
- Method may have profound impact on stroke imaging by improving diagnostic reliability and making CTP technique more widely available and equitable

Deep Reinforcement Learning and Computer Vision

> Personal Project

- Jan. 2021 Present
- Currently implementing and reproducing a model-based reinforcement learning algorithm for Atari proposed by Kaiser et al. (2020)

G. Barnier 1/4

Geophysical Seismic Imaging

> Stanford Exploration Project, Stanford Geophysics (Prof. B. Biondi)

- 2013 Present
- **Research interests**: optimization of large-scale non-convex inverse problems, seismic imaging and velocity-model building algorithms, efficient implementations of numerical schemes with GPUs
- Main thesis contributions:
 - (1) Designed a novel loss function formulation and a robust gradient-descent method to mitigate the presence of spurious local minima in a high-dimension prominent challenging seismology problem referred to as full waveform inversion
 - (2) Developed an industry-quality and efficient GPU numerical implementation of thesis algorithm for 3D field datasets (tens of terabytes of data, billions of unknown parameters)
 - (3) Successfully applied method on a deep-water ocean bottom node acquisition 3D field survey

Numerical Methods for Wave Propagation

> Dunham Group, Stanford Geophysics (Prof. E. Dunham)

- 2015 2017
- Developed an early-warning tsunami modeling and prediction algorithm using a data assimilation technique with Kalman filters
- Applied method to a 2D tsunami model based on dynamic rupture simulations of the 2011 Tohoku earthquake
- Accurately reconstructed tsunami wavefield prior to wave arrival at the coast

INDUSTRY EXPERIENCE

Seismic Imaging Research Consultant

> Self-initiated Industry Partnerships

2018 - 2021

- Successfully approached and convinced management of three major oil companies to invest in personal imaging algorithm and deployed solution on companies' computing infrastructures

Seismic Imaging Research Intern

> BP America - Houston TX, USA

Summers 2016 and 2017

- Deployed Ph.D. algorithm on HPC system and showed value for image quality enhancement in complex geological settings
- > Chevron San Ramon, CA, USA

Jun. 2015 – Sep. 2015

- Improved and applied a Bayesian uncertainty estimation technique based on the Metropolis-Hastings algorithm for oil reserve quantification
- > Total Pau, France

Jun. 2012 – Sep. 2012

 Analyzed and identified optimal reservoir-characterization solution (among three software packages) adequate to the team's needs and budget, convinced management committee to follow selection recommendation

Fixed Income Hedge Fund Structurer

> J.P. Morgan – London, UK

2007-2010

- Provided pricing, trade executions, and financial advice on interest rates derivative products to major investment firms including Pacific Investment Management Company (PIMCO)
- Took the initiative to develop a novel interest-rate swaps modeling code with improved flexibility and accuracy (compared to available commercial package), which became the team's primary tool for asset pricing

G. Barnier 2/4

LANGUAGES

French/English (bilingual), Spanish (fluent), Hebrew (beginner), Bahasa Indonesia (basics)

AWARDS AND ACHIEVEMENTS

Academics

- > 2019 Award for Best Paper Presented by a Student at the Society of Exploration Geophysicists (SEG)
- > 2013 Colorado School of Mines Mendenhall Award for outstanding academic achievement
- > 2012 Colorado School of Mines Hess Corp Fellowship

Trail-running

- > 2018 First place overall, Spartan Race Diablo Grande Super Open
- > 2018 First place overall, Inside Trail Pacifica Foothills Trail Half Marathon
- > 2015 First place overall, Mount Diablo Coastal Trail Runs Half Marathon

PUBLICATIONS

- E. Biondi, G. Barnier, R. G. Clapp, F. Picetti, S. Farris, An object-oriented optimization framework for large-scale inverse problems: Computers & Geosciences (accepted).
- Barnier, G. and Biondi, E., 2020. Full waveform inversion by model extension using a model-space multi-scale approach. In SEG Technical Program Expanded Abstracts 2020 (pp. 646-650). Society of Exploration Geophysicists.
- Biondi, E. and Barnier, G., 2020. Elastic-parameter estimation by combining full-waveform inversion by model extension and target-oriented elastic inversion. In SEG Technical Program Expanded Abstracts 2020 (pp. 735-739). Society of Exploration Geophysicists
- Barnier, G., Biondi, E. and Clapp, R., 2019. Waveform inversion by model reduction using spline interpolation. In SEG Technical Program Expanded Abstracts 2019 (pp. 1400-1404). Society of Exploration Geophysicists. Won award for Best Paper Presented by a Student.
- Yang, Y., Dunham, E.M., Barnier, G. and Almquist, M., 2019. Tsunami wavefield reconstruction and forecasting using the ensemble Kalman filter. Geophysical Research Letters, 46(2), pp.853-860.
- Barnier, G., Biondi, E. and Biondi, B., 2018. Full waveform inversion by model extension. In SEG Technical Program Expanded Abstracts 2018 (pp. 1183-1187). Society of Exploration Geophysicist.
- Biondi, E., Biondi, B. and Barnier, G., 2018. Target-oriented elastic full-waveform inversion through extended-migration redatuming. In SEG Technical Program Expanded Abstracts 2018 (pp. 1228-1232). Society of Exploration Geophysicists.
- Barnier, G., Biondi, E. and Biondi, B., 2018, June. A Modified Approach for Tomographic Full Waveform Inversion Using Variable Projection. In 80th EAGE Conference and Exhibition 2018 (Vol. 2018, No. 1, pp. 1-5). European Association of Geoscientists & Engineers.
- G. Barnier, E. Biondi, and B. Biondi, 2017, A modified approach to tomographic full-waveform inversion: SIAM Imaging Symposium, Rice University, Houston.
- Biondi, E., Barnier, G. and Biondi, B., 2017. Preconditioned elastic full-waveform inversion with approximated Hessian. In SEG Technical Program Expanded Abstracts 2017 (pp. 1654-1658). Society of Exploration Geophysicists.
- Barnier, G. and Dunham, E.M., 2016, December. Tsunami Modeling and Prediction Using a Data Assimilation Technique with Kalman Filters. In AGU Fall Meeting Abstracts (Vol. 2016, pp. NH41A-1754).

G. Barnier 3/4

- Revil, A., Barnier, G., Sava, P.C., Jardani, A. and Kulessa, B., 2014, December. Seismoelectric coupling
 in partially water-saturated porous media: From the theory to the detection of saturation fronts. In
 AGU Fall Meeting Abstracts (Vol. 2014, pp. NS31D-06).
- Revil, A., Barnier, G., Karaoulis, M., Sava, P., Jardani, A. and Kulessa, B., 2014. Seismoelectric coupling in unsaturated porous media: theory, petrophysics, and saturation front localization using an electroacoustic approach. Geophysical Journal International, 196(2), pp.867-884.
- Barnier, G., 2013. Detecting electrical and hydraulic heterogeneities using seismic focusing and seismoelectric conversions (MSc. dissertation, Colorado School of Mines).

INVITED CONFERENCE PRESENTATIONS

- "Full waveform inversion by model extension using a model-space multi-scale approach" at the 89th SEG Annual meeting 2020, invited speaker at the post-convention workshop "Low-frequency FWI: How low do we need to go?" (Houston, USA).
- "Extended imaging for robust velocity-model building and elastic target-oriented full-waveform inversion", invited speaker at the 8th Chevron FWI workshop 2019 (Houston, USA).
- "Exploiting the entire data bandwidth by extended imaging for avoiding cycle skipping and elastic target-oriented inversion" at the 88th SEG Annual meeting 2019, invited speaker at the post-convention workshop "Value of High-frequency FWI Models" (San Antonio, USA).
- "Full Waveform Inversion by Model Extension", invited speaker at the 2019 SIAM Conference on Mathematical and Computational issue in the Geosciences (Houston, USA).
- "Effects of top-salt picking inaccuracies on subsalt image quality" at the 85th SEG Annual meeting 2015, invited speaker at the post-convention workshop "Challenges and Opportunities in Subsalt Imaging" (New Orleans, USA).

G. Barnier 4/4