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Angle-domain common-image gathers for migration velocity analysis
by wavefield-continuation imaging

Biondo Biondi1 and William W. Symes2

ABSTRACT

We analyze the kinematic properties of offset-domain
common image gathers (CIGs) and angle-domain CIGs
(ADCIGs) computed by wavefield-continuation migra-
tion. Our results are valid regardless of whether the CIGs
were obtained by using the correct migration velocity.
They thus can be used as a theoretical basis for devel-
oping migration velocity analysis (MVA) methods that
exploit the velocity information contained in ADCIGs.

We demonstrate that in an ADCIG cube, the image
point lies on the normal to the apparent reflector dip
that passes through the point where the source ray inter-
sects the receiver ray. The image-point position on the
normal depends on the velocity error; when the veloc-
ity is correct, the image point coincides with the point
where the source ray intersects the receiver ray. Starting
from this geometric result, we derive an analytical ex-
pression for the expected movements of the image points
in ADCIGs as functions of the traveltime perturbation
caused by velocity errors. By applying this analytical re-
sult and assuming stationary raypaths (i.e., small velocity
errors), we then derive two expressions for the residual
moveout (RMO) function in ADCIGs. We verify our
theoretical results and test the accuracy of the proposed
RMO functions by analyzing the migration results of a
synthetic data set with a wide range of reflector dips.

Our kinematic analysis leads also to the development
of a new method for computing ADCIGs when signif-
icant geological dips cause strong artifacts in the AD-
CIGs computed by conventional methods. The proposed
method is based on the computation of offset-domain
CIGs along the vertical-offset axis and on the “optimal”
combination of these new CIGs with conventional CIGs.
We demonstrate the need for and the advantages of the
proposed method on a real data set acquired in the North
Sea.
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INTRODUCTION

With wavefield-continuation migration methods being used
routinely for imaging projects in complex areas, the ability
to perform migration velocity analysis (MVA) starting from
the results of wavefield-continuation migration is becoming
essential to advanced seismic imaging. As for Kirchhoff imag-
ing, MVA for wavefield-continuation imaging is mostly based
on the information provided by the analysis of common im-
age gather (CIGs). For wavefield-continuation methods, most
of the current MVA methods start from angle-domain CIGs
(ADCIGs) (Biondi and Sava, 1999; Clapp and Biondi, 2000;
Liu et al., 2001; Mosher et al., 2001), though the use of more
conventional surface-offset-domain CIGs is also being evalu-
ated (Stork et al., 2002).

Both kinematic and amplitude properties (de Bruin et al.,
1990; Wapenaar et al., 1999; Sava et al., 2001; de Hoop et al.,
2004) have been analyzed in the literature for ADCIGs ob-
tained when the migration velocity is accurate. On the contrary,
the properties of the ADCIGs obtained when the migration
velocity is inaccurate have been only qualitatively discussed
in the literature. This lack of quantitative understanding may
lead to errors when performing MVA from ADCIGs. In this
paper, we analyze the kinematic properties of ADCIGs un-
der general conditions (accurate or inaccurate velocity). If the
migration velocity is inaccurate, our analysis requires only a
smooth migration velocity function in the neighborhood of the
imaging point. We discuss this condition more extensively in
the first section. The application of the insights provided by our
analysis may substantially improve the results of the follow-
ing three procedures: (1) measurement of velocity errors from
ADCIGs by residual moveout (RMO) analysis, (2) inversion
of RMO measurements into velocity updates, and (3) com-
putation of ADCIGs in the presence of complex geologic
structure.

Our analysis demonstrates that in an image cube trans-
formed to the angle domain (in the following we refer to this
image cube as an ADCIG cube), the image point lies on the
normal to the apparent reflector dip passing through the point
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1284 Biondi and Symes

where the source ray intersects the receiver ray. We exploit
this result to define an analytical expression for the expected
movements of the image points in ADCIGs as a function of the
traveltime perturbation caused by velocity errors. This leads
us to the definition of two alternative residual moveout func-
tions that can be applied when measuring velocity errors from
migrated images. We test the accuracy of these alternatives,
and discuss their relative advantages and disadvantages. Fur-
thermore, the availability of a quantitative expression for the
expected movements of the image points is crucial when in-
verting those movements into velocity corrections by either
simple vertical updating or sophisticated tomographic meth-
ods. Therefore, our results ought to be incorporated in velocity
updating methods.

Our theoretical result also implies that ADCIGs are im-
mune, at least to first order in velocity perturbations, from
the distortions caused by image-point dispersal. Image-point
dispersal occurs when migration velocity errors cause events
from the same segment of a dipping reflector to be imaged
at different locations (Etgen, 1990). This inconsistency creates
substantial problems when using dipping reflections for veloc-
ity updating; its absence makes ADCIGs even more attractive
for MVA.

The computation of ADCIGs is based on a decomposition
(usually performed by slant stacks) of the wavefield either be-
fore imaging (de Bruin et al., 1990; Mosher et al., 1997; Prucha
et al., 1999; Xie and Wu, 2002), or after imaging (Biondi and
Shan, 2002; Rickett and Sava, 2002; Sava and Fomel, 2003).
In either case, the slant-stack transformation is usually applied
along the horizontal subsurface-offset axis. However, when the
geologic dips are steep, this “conventional” way of computing
CIGs does not produce useful gathers, even if it is kinematically
valid for geologic dips less than 90◦. As the geologic dips in-
crease, the horizontal-offset CIGs (HOCIGs) degenerate, and
their focusing around zero offset blurs. This limitation of HO-
CIGs can be sidestepped by computing offset-domain CIGs
along the vertical subsurface-offset axis (VOCIGs) (Biondi
and Shan, 2002). Although neither set of offset-domain gath-
ers (HOCIG or VOCIG) provides useful information for the
whole range of geologic dips, an appropriate combination of
the two sets does. Our analysis of the kinematic properties of
ADCIGs suggests a simple and effective method for combin-
ing a HOCIG cube with a VOCIG cube to create an ADCIG
cube that is immune to artifacts in the presence of arbitrary
geologic dips.

We present and demonstrate the main results of this paper
using a ray-theoretical approach, though we apply the theory to
analyze ADCIGs obtained by wavefield-continuation method.
Our approach is apparently inconsistent, but it is motivated
by the fact that the ray-based analysis is more intuitive than
the equivalent wave-based analysis. The two approaches are
obviously connected through the plane-wave decomposition
performed by slant stacking. We equate the propagation direc-
tion of plane waves with the propagation direction of specular
rays; thus, we implicitly make a stationary-phase approxima-
tion that assumes that the seismic events are not dispersive
(i.e., that wavefronts are locally planar and coherent for all fre-
quencies). This assumption is not strictly necessary because our
analysis is valid for each frequency component, but nonethe-
less we believe that the advantages in simplicity are worthwhile
despite the apparent loss of generality.

Our ray-based analysis of ADCIGs is also founded on the
concept of subsurface offset. The physical interpretation of the
subsurface offset is immediate when source-receiver migration
is used. In this case, the subsurface offset coincides with the
data offset after datuming by survey sinking. For shot-profile
migration, the equivalence between data offsets at depth and
subsurface offsets is demonstrated by Wapenaar and Berkhout
(1987) and Biondi (2003). De Bruin (1992) presents an alter-
native wave-theoretical analysis of ADCIGs obtained by shot-
profile migration using wavefield continuation when the mi-
gration velocity is correct.

ADCIGs have been introduced also for Kirchhoff migration
(Xu et al., 2001; Brandsberg-Dahl et al., 2003), and they can be
used for MVA with Kirchhoff methods as well (Brandsberg-
Dahl et al., 1999). We believe that the analysis presented in this
paper might be extended to ADCIGs computed by Kirchhoff
migration. However, in complex media, the two types of AD-
CIG have subtle kinematic differences, as clearly demonstrated
by Stolk and Symes (2004). Therefore, the application of our
results to Kirchhoff ADCIGs may require further analysis that
is beyond the scope of this paper.

We start our paper by briefly reviewing the methodol-
ogy for computing offset-domain and angle-domain CIGs by
wavefield-continuation migration. The second section analyzes
the kinematic properties of CIGs and ADCIGs, and contains
the main theoretical development of the paper. The third sec-
tion exploits the theoretical results to define a robust algorithm
to compute ADCIGs in the presence of geological structure,
and illustrates its advantages with a real-data example. The
fourth section verifies the theoretical analysis by using it to
predict reflector movements in the migrated images of a syn-
thetic data set. Finally, the fifth section derives two expressions
for the RMO function to be applied for measuring velocity
errors from migrated images.

COMPUTATION OF COMMON IMAGE
GATHERS BY WAVEFIELD CONTINUATION

In this section we briefly revisit the method for computing
(CIGs) by wavefield-continuation migration. The following de-
velopment assumes that both the source wavefield and the re-
ceiver wavefield have been numerically propagated into the
subsurface. The analytical expressions represent wavefields in
the time domain; thus, they appear to implicitly assume that the
wavefields have been propagated in the time domain. However,
all the considerations and results that follow are independent
of the specific numerical method that was used for propagating
the wavefields. They are obviously valid for reverse-time mi-
gration when the wavefields are propagated in the time domain
(Baysal et al., 1983; Whitmore, 1983; Etgen, 1986; Biondi and
Shan, 2002). They are also valid when the wavefields are prop-
agated by downward continuation in the frequency domain, if
there are no overturned events. Furthermore, our results are
valid when source-receiver migration is used instead of shot-
profile migration; the physical interpretation of the concepts of
subsurface offset and of the imaging point in the subsurface-
offset domain is actually more immediate for source-receiver
migration than for shot-profile migration.

The conventional imaging condition for shot-profile migra-
tion is based on the crosscorrelation in time of the source wave-
field (S) with the receiver wavefield (R). The equivalent of the
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ADCIGs for Migration Velocity Analysis 1285

stacked image is the average over sources (s) of the zero lag of
this crosscorrelation; that is,

I (z, x) =
∑

s

∑
t

Ss(t, z, x)Rs(t, z, x), (1)

where z and x are respectively depth and the horizontal axes,
and t is time. The result of this imaging condition is equivalent
to stacking over offsets with Kirchhoff migration.

The imaging condition expressed in equation (1) has the sub-
stantial disadvantage of not providing prestack information
that can be used for either velocity updates or amplitude anal-
ysis. Equation 1 can be generalized (Biondi and Shan,2002;
Rickett and Sava, 2002) by crosscorrelating the wavefields
shifted horizontally with respect to each other. The prestack
image becomes a function of the horizontal relative shift, which
has the physical meaning of a subsurface half offset (xh). It can
be computed as

I (z, x, xh) =
∑

s

∑
t

Ss(t, z, x − xh)Rs(t, z, x + xh). (2)

A section of the image cube I (z, x, xh) taken at constant hor-
izontal location x is a horizontal offset common image gather
(HOCIG). The whole image cube can be seen as a collec-
tion of HOCIGs. Sava and Fomel (2003) presented a simple
method for transforming HOCIGs into ADCIGs by a slant-
stack transformation (Schultz and Claerbout, 1978) applied
independently to each HOCIG:

Iγx (z, x, γ ) = SlantStack[I (z, x, xh)]; (3)

where γ is the aperture angle of the reflection, as shown in
Figure 1.

Figure 1. Geometry of an ADCIG for a single event migrated
with the wrong (low in this case) velocity. Depending on the
context, the angles can be either the angles formed by the prop-
agation direction of the rays, or by the propagation direction of
the associated plane waves. The propagation direction of the
source ray forms the angle βs with the vertical, and the propa-
gation direction of the receiver ray forms the angle βr with the
vertical; γ is the apparent aperture angle, and α is the apparent
reflector dip. The source ray and the receiver ray cross at Ī. The
arrows indicate positive angles; that is, in the figure, βs , βr , and
α are negative (larger than π) and γ is positive. This sign con-
vention is consistent with upward propagating rays (waves).

This transformation from HOCIG to ADCIG is based on
the following relationship between the aperture angle and the
slope (∂z/∂xh) measured in image space:

− ∂z

∂xh

∣∣∣∣
t,x

= tan γ = −kxh

kz
, (4)

where kxh and kz are respectively the half-offset wavenum-
ber and the vertical wavenumber. The relationship between
tan γ and the wavenumbers suggests that the transformation
to ADCIGs can be accomplished in the Fourier domain by a
simple radial-trace transform (Sava and Fomel, 2003).

Equation 4 relates slopes in the wavenumber domain to ray-
propagation directions in the time domain; it is based on an
implicit stationary-phase assumption, as we discussed in the
previous section. In other words, we identify the direction of
the phase-velocity vector of a plane wave with the direction of
propagation of the ray normal to the plane wave. This identifi-
cation of plane waves with rays is necessary only locally around
the imaging point, as it is graphically represented by the box
around the imaging point in Figure 1.

Sava and Fomel (2003) demonstrated the validity of equa-
tion 4 based only on Snell’s law and on the geometric rela-
tionships between the propagation directions of the source ray
(determined by βs in Figure 1) and receiver ray (determined by
βr in Figure 1). Its validity is thus independent of the focusing
of the reflected energy at zero offset; that is, it is valid regard-
less of whether the image point coincides with the intersection
of the two rays (marked as Ī in Figure 1). In other words, it is
independent of whether the correct migration velocity is used.
The only assumption about the migration velocity is that the
velocity at the imaging depth is the same along the source ray
and the receiver ray. This condition is obviously fulfilled when
the reflected energy focuses at zero offset, but it is, at least
approximately, fulfilled in most practical situations of interest.
In most practical cases, we can assume that the migration ve-
locity function is smooth in a neighborhood of the imaging
point. The extent of this neighborhood depends on the veloc-
ity error because it depends on the distance between the end
point of the source ray and the end point of the receiver ray
(see Figure 2). The only exception of practical importance is
when the reflection is caused by a high-contrast interface, such
as a salt-sediment interface. In these cases, our results must
be applied with particular care. When the migration velocity
is correct, α and γ are respectively the true reflector dip and
the true aperture angle; otherwise they are the apparent re-
flector dip and the apparent aperture angle. In Figure 1, the
box around the imaging point signifies the local nature of the
geometric relationships relevant to our discussion; it empha-
sizes that these relationships depend only on the local velocity
function.

When the velocity is correct, the image point obviously co-
incides with the crossing point of the two rays Ī. However, the
position of the image point when the velocity is not correct has
been left undefined by previous analyses (Prucha et al., 1999;
Sava and Fomel, 2003). In this paper, we demonstrate the im-
portant result that in an ADCIG, when the migration velocity is
incorrect, the image point lies along the direction normal to the
apparent geological dip. We identify this normal direction with
the unit vector n that we define as oriented in the direction of
decreasing traveltimes for the rays (see Figure 1). Stork (1992)
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1286 Biondi and Symes

and Meng and Bleistein (2001) postulate a similar behavior for
the CIGs obtained by common-offset Kirchhoff migration.

Notice that the geometric arguments presented in this pa-
per are based on the assumption that the source and receiver
rays cross even when the data were migrated with the wrong
velocity (below the imaging point in case of too low migration
velocity and above the imaging point in the opposite case).
This assumption is valid in two dimensions except in degener-
ate cases of marginal practical interest (e.g. diverging rays). In
three dimensions, this assumption is more easily violated be-
cause two rays are not always coplanar. In contrast with the 2D
case, in three dimensions the plane-wave interpretation of AD-
CIGs would actually simplify the analysis with respect to the
ray interpretation because plane waves always intersect even
when the migration velocity is wrong. We consider the general-
ization to three dimensions of our 2D results beyond the scope
of this paper, though this generalization is possible once 3D
ADCIGs are defined (de Bruin, 1992; Biondi et al., 2003).

As will be discussed in the following section and illustrated
later by the real-data example in Figure 4a, the HOCIGs,
and consequently the ADCIGs computed from the HOCIGs
(Figure 5a), have problems when the reflectors are steeply dip-
ping. At the limit, the HOCIGs become useless when imaging
nearly vertical reflectors using either overturned events or pris-
matic reflections. To create useful ADCIGs in these situations,
Biondi and Shan (2002) introduced a new kind of CIG. This
new kind of CIG is computed by introducing a vertical half
offset (zh) into equation 1 to obtain

I (z, x, zh) =
∑

s

∑
t

Ss(t, z − zh, x)Rs(t, z + zh, x). (5)

A section of the image cube computed by equation 5 taken
at constant depth z is a vertical offset common image gather
(VOCIG).

As for the HOCIGs, the VOCIGs can be transformed into
an ADCIG by applying a slant-stack transformation to each

Figure 2. Geometry of the three different kinds of offset-
domain (horizontal, vertical, and geological-dip) CIG for a sin-
gle event migrated with the wrong velocity. Ixh is the horizontal-
offset image point, Izh is the vertical-offset image point, and I0
is the geological-dip offset image point.

individual VOCIG; that is,

Iγz (z, x, γ ) = SlantStack[I (z, x, zh)]. (6)

This transformation is based on the following relationship be-
tween the aperture angle and the slope ∂x/∂zh measured in
image space:

∂x

∂zh

∣∣∣∣
t,z

= tan γ = kzh

kx
. (7)

Equation 7 is analogous to equation 4, and its validity can be
trivially demonstrated from equation 4 by a simple axes rota-
tion. However, notice the sign differences between equation 7
and equation 4 caused by the conventions defined in Figure 1.

Notice that our notation distinguishes the result of the two
transformations to ADCIG (Iγx and Iγz ) because they are dif-
ferent objects even though they are images defined in the same
domain (z, x, γ ). One of the main results of this paper is the def-
inition of the relationship between Iγx and Iγz , and the deriva-
tion of a robust algorithm to “optimally” merge the two sets of
ADCIGs. To achieve this goal, we first analyze the kinematic
properties of HOCIGs and VOCIGs.

KINEMATIC PROPERTIES OF COMMON
IMAGE GATHERS

To analyze the kinematic properties of HOCIGs and VO-
CIGs, it is useful to observe that they are just particular cases
of offset-domain gathers. In general, the offset can be oriented
along any arbitrary direction. In particular, the offset direc-
tion aligned with the apparent geological dip of the imaged
event has unique properties. We will refer to this offset as the
geological-dip offset, and the corresponding CIGs as geological
offset CIGs (GOCIGs).

Figure 2 illustrates the geometry of the different kinds of
offset-domain CIGs for a single event. In this sketch, the migra-
tion velocity is assumed to be lower than the true velocity, and
thus the reflections are imaged too shallow and above the point
where the actual source ray crosses the actual receiver ray (Ī).
When HOCIGs are computed, the end point of the source ray
(Sxh ) and the end point of the receiver ray (Rxh ) are at the same
depth. By definition, the imaging point Ixh is midway between
Sxh and Rxh , and the imaging half offset is xh = (Rxh − Ixh ) · x.
Similarly, when VOCIGs are computed, the end point of the
source ray (Szh ) and the end point of the receiver ray (Rzh )
are at the same horizontal location. The imaging point Izh is
midway between Szh and Rzh , and the imaging half offset is
zh = (Rzh − Izh ) · z. When the offset direction is oriented along
the apparent geological dip α (what we called the geological-
dip offset direction), the end point of the source ray is S0 and
the end point of the receiver ray is R0. The imaging point I0

is midway between S0 and R0, and the imaging half offset is
h0 = R0 − I0. Notice that we define the geological-dip half off-
set h0 as a vector because it can be oriented arbitrarily with
respect to the coordinate axes.

Figure 2 shows that both Ixh and Izh lie on the line passing
through S0, I0, and R0. This is an important property of the
offset-domain CIGs and is based on a crucial constraint im-
posed on our geometric construction; that is, the traveltime
along the source ray summed with the traveltime along the re-
ceiver ray is the same for all the offset directions, and is equal to
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ADCIGs for Migration Velocity Analysis 1287

the recording time of the event. The independence of the total
traveltimes from the offset directions is a direct consequence
of taking the zero lag of the crosscorrelation in the imaging
conditions of equations 2 and 5. This constraint, together with
the assumption of locally constant velocity discussed above,
directly leads to the following equalities:∣∣Sxh − S0

∣∣ = ∣∣Rxh − R0

∣∣, and
∣∣Szh − S0| = ∣∣Rzh − R0

∣∣,
(8)

which in turn are at the basis of the collinearity of I0, Ixh , and
Izh .

The offsets along the different directions are linked by the
following simple relationship, which can be readily derived by
trigonometry applied to Figure 2:

xh = h̃0

cos α
, (9)

zh = h̃0

sin α
, (10)

where h̃0 = |h0| sign (sin δ), with δ being the angle formed by
h0 with the normal n (see Figure 2). Notice that the definition
of h̃0 is such that its sign depends on whether I0 is before or
beyond Ī.

Although Ixh and Izh are both collinear with I0, they are
shifted with respect to each other and with respect to I0. The
shifts of the imaging points Ixh and Izh with respect to I0 can be
easily expressed in terms of the offset h0 and the angles α and
γ as follows:

�Ixh = (Ixh − I0) = h0 tan γ tan α, (11)

�Izh = (Izh − I0) = −h0
tan γ

tan α
. (12)

The two imaging points Ixh and Izh are always on the opposite
side of I0; their distance prevents us from constructively aver-
aging HOCIGs with VOCIGs to create a single set of offset-
domain CIGs.

Notice the dependence of �Ixh and �Izh on the aperture an-
gle γ and the geological dip α. The dependence on γ causes
events with different aperture angles to be imaged at different
locations, even if they originated at the same reflecting point in
the subsurface. This phenomenon is related to the well known
reflector-point dispersal in common midpoint gathers. In this
context, this dispersal is a consequence of using a wrong imag-
ing velocity, and we will refer to it as image-point dispersal. We
now discuss how the transformation to ADCIGs overcomes the
problems related to the image-point shift and thus removes, at
least to first order, the image-point dispersal.

Kinematic properties of ADCIGs

The transformation to the angle domain, as defined by equa-
tions 3 and 4 for HOCIGs, and equations 6 and 7 for VOCIGs,
acts on each offset-domain CIG independently. Therefore,
when the reflected energy does not focus at zero offset, the
transformation to the angle domain shifts the image point along
the direction orthogonal to the offset to reach the image point
in the angle domain Iγ . The horizontal-offset image point (Ixh )
shifts vertically, and the vertical-offset image point (Izh ) shifts
horizontally. We will demonstrate the two following important
properties of this normal shift:

1) The normal shift corrects for the effects of the offset direc-
tion on the location of the image point; that is, the trans-
formation to the angle domain shifts the image points from
different locations in the offset domain (Ixh , Izh , and I0) to
the same location in the angle domain (Iγ ).

2) The image location in the angle domain (Iγ ) lies on the
normal to the apparent geological dip passing through the
crossing point of the source and receiver rays (Ī). Iγ is lo-
cated at the crossing point of the lines passing through S0

and R0 and orthogonal to the source ray and receiver ray,
respectively. The shift along the normal to the reflector,
caused by the transformation to angle domain, is thus equal
to

�nγ = (Iγ − I0) = h̃0tan γ n = tan2 γ�nh0 , (13)

where �nh0 = (h̃0/ tan γ ) n is the normal shift in the
geological-dip domain. The total normal shift caused by in-
complete focusing at zero offset is thus equal to

�ntot = (Iγ − Ī) = �nh0 + �nγ

= �nh0 (1 + tan2 γ ) = �nh0

cos2 γ
. (14)

Figure 3 illustrates properties (1) and (2). These properties
have several important consequences. The three results most
relevant to migration velocity analysis are

1) ADCIGs obtained from HOCIGs and VOCIGs can be con-
structively averaged, in contrast to the original HOCIGs
and VOCIGs. We exploit this property to introduce a ro-
bust algorithm for creating a single set of ADCIGs that is
insensitive to geological dips and thus is ready to be ana-
lyzed for velocity information.

2) The reflector-point dispersal that negatively affects offset-
domain CIGs is corrected in the ADCIGs, at least to first
order. If we assume the raypaths to be stationary (i.e., small

Figure 3. Geometry of an ADCIG for a single event migrated
with the wrong velocity. The transformation to the angle do-
main shifts all the offset-domain image points (Ixh , Izh , I0) to
the same angle-domain image point Iγ .
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1288 Biondi and Symes

velocity error), for a given reflecting segment the image
points for all aperture angles γ share the same apparent
dip, and thus they are all aligned along the normal to the
apparent reflector dip.

3) From equation 14, invoking Fermat’s principle and applying
simple trigonometry, we can also easily derive a relationship
between the total normal shift �ntot and the total traveltime
perturbation caused by velocity errors as follows (Etgen,
1990; Stork, 1992):

�ntot = �t

2S cos γ
n, (15)

where S is the background slowness around the image point,
and �t is defined as the difference between the perturbed
traveltime and the background traveltime. We will exploit
this relationship to introduce a simple and accurate expres-
sion for measuring residual moveouts from ADCIGs.

Demonstration of kinematic properties of ADCIGs

Properties (1) and (2) can be demonstrated in several ways.
In this paper, we follow an indirect path that might seem cir-
cuitous but allows us to gather further insights on the properties
of ADCIGs.

We first demonstrate property (1) by showing that the radial-
trace transformations represented by equation 4, and analo-
gously equation 7, are equivalent to a chain of two transforma-
tions. The first one is the transformation of the HOCIGs (or
VOCIGs) to GOCIGs by a dip-dependent stretching of the
offset axis; that is,

h̃0 = xh cos α, or h̃0 = zh sin α, (16)

or in the wavenumber domain,

kh0 = kxh

cos α
, or kh0 = kzh

sin α
, (17)

where kh0 is the wavenumber associated with h̃0, and kxh and
kzh are the wavenumbers associated with xh and zh .

The second is the transformation of HOCIGs to the angle
domain according to the relation

tan γ = kh0

kn
, (18)

where kn is the wavenumber associated with the direction nor-
mal to the reflector.

The transformation of HOCIGs to GOCIGs by equations 16
and 17 follows directly from equations 9 and 10. Because the
transformation is a dip-dependent stretching of the offset axis,
it shifts energy in the (z, x) plane. Appendix A demonstrates
that the amount of shift in the (z, x) plane exactly corrects for
the image-point shift characterized by equations 11 and 12.

Appendix B demonstrates the geometrical property that
for energy dipping at an angle α in the the (z, x) plane, the
wavenumber kn along the normal to the dip is linked to the
wavenumbers along (z, x) by

kn = − kz

cos α
= kx

sin α
. (19)

Substituting equations 17 and 19 into equation 18, we obtain
equations 4 and 7. The graphical interpretation of this ana-

lytical result is immediate. In Figure 3, the transformation to
GOCIG (equations 17) moves the imaging point Ixh (or Izh ) to
I0, and the transformation to the angle domain (equation 18)
moves I0 to Iγ . This sequence of two shifts is equivalent to the
direct shift from Ixh (or Izh ) to Iγ caused by the transformation
to the angle domain applied to a HOCIG (or VOCIG).

We just demonstrated that the results of the transformation
to ADCIGs are independent of which type of offset-domain
CIGs we started from (HOCIG, VOCIG, or GOCIG). Conse-
quently, the imaging point Iγ must be common to all kinds of
ADCIGs. Furthermore, the image point must lie along each of
the normals to the offset directions passing through the respec-
tive image points. In particular, it must lie along the normal to
the apparent geological dip and at the crossing point of the the
vertical line passing through Ixh and the horizontal line passing
through Izh . Given these constraints, the validity of property (2)
(equations 13 and 14) can be easily verified by trigonometry, as-
suming that the image-point shifts are given by the expressions
in equations 9 and 10.

ROBUST COMPUTATION OF ADCIGs IN
PRESENCE OF GEOLOGICAL STRUCTURE

Our first application of the CIG kinematic properties an-
alyzed in the previous section is the definition of a robust
method to compute high-quality ADCIGs for all events, includ-
ing steeply dipping and overturned reflections. In the presence
of complex geological structure, the computation of neither
the conventional HOCIGS nor the new VOCIGs is sufficient
to provide complete velocity information because the image is
stretched along both the subsurface-offset axes.

According to equation 9, as the geological dip increases,
the horizontal-offset axis is stretched. At the limit, when α

is equal to 90◦, the relation between the horizontal offset
and the geological-dip offset becomes singular. Similarly, VO-
CIGs have problems when the geological dip is nearly flat
(α = 0◦) and equation 10 becomes singular. This dip-dependent
offset-stretching of the offset-domain CIGs causes artifacts
in the corresponding ADCIGs. Furthermore, according to
equations 11–12, the image points Ixh and Izh diverge as well
in either case.

The fact that relationships 9 and 10 diverge only for isolated
dips (0◦, 90◦, 180◦, and 270◦) may falsely suggest that problems
are limited to rare cases. However, in practice there are two
factors that make the computation of ADCIGs in presence of
geological dips prone to artifacts:

1) To limit the computational cost, we would like to compute
the offset-domain gathers over a range of offsets as narrow
as possible. This is particularly true for shot-profile migra-
tions, where the computation of the imaging conditions by
equation 2 can add substantially to the computational cost
when it is performed over a wide range of subsurface offsets.

2) The attractive properties of the ADCIGs that we demon-
strated above, including the elimination of the image-point
dispersal, depend on the assumption of locally constant ve-
locity. In particular, velocity is assumed to be constant along
the ray segments Sxh S0, Rxh R0, Szh S0, and Rzh R0 drawn in
Figure 2. The longer those segments are, the more likely
it is that the constant velocity assumption will be violated
sufficiently to cause substantial errors.
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ADCIGs for Migration Velocity Analysis 1289

These considerations suggest that, in the presence of com-
plex structures, high-quality ADCIGs ought to be computed
using the information present in both HOCIGs and VOCIGs.
In practice, VOCIGs should be computed in combination
with numerical methods that are capable of handling nearly-
horizontal propagating events (such as a time-domain propa-
gator or a steep-dips downward-continuation method).

There are two alternative strategies for obtaining a single
set of ADCIGs from the information present in HOCIGs and
VOCIGs. The first method merges HOCIGs with VOCIGs af-
ter they have been transformed to GOCIGs by the application
of the offset stretching expressed in equation 16. The merged
GOCIGs are then transformed to ADCIGs by applying the
radial-trace transformation expressed in equation 18. The sec-
ond method merges HOCIGs with VOCIGs directly in the
angle domain after both have been transformed to ADCIGs
by the radial-trace transforms expressed in equations 4
and 7.

The two methods are equivalent if the offset range is in-
finitely wide, but they may have different artifacts when the
offset range is limited. Since the first method merges the images
in the offset domain, it can take into account the offset-range
limitation more directly and, thus, it has the potential to pro-
duce more accurate ADCIGs. However, the second method
is more direct and simpler to implement. In both methods, an
effective, though approximate, way for taking into account the
limited offset ranges is to weight the CIGs as a function of the
apparent dips α in the image. A simple weighting scheme is

wxh = cos2 α, wzh = sin2 α, (20)

where the weights wxh and wzh are respectively for the CIGs
computed from the HOCIGs and the VOCIGs. These weights
have the attractive property that their sum is equal to one for
any α. Although the weights are dependent on the geological
dip α, their computation is straightforward and accurate in the
Fourier domain because they are independent of the spatial
coordinates. We used this weighting scheme for all the results
shown in this paper.

ADCIGs in the presence of geological structure:
A North Sea example

The following marine-data example demonstrates that the
application of the robust method for computing ADCIGs pre-
sented in this section substantially improves the quality of AD-
CIGs in the presence of geological structure. Our examples
show migration results of a 2D line extracted from a 3D data
set acquired in the North Sea over a salt body with a verti-
cal edge. The data were imaged using a shot-profile reverse
time migration, because the reflections from the salt edge had
overturned paths.

As predicted by our theory, in the presence of a wide range
of reflector dips (e.g., flat sediments and salt edges), both the
HOCIGS and the VOCIGs are affected by artifacts. Figure 4
illustrates this problem. It displays orthogonal sections cut
through the HOCIG cube (Figure 4a) and the VOCIG cube
(Figure 4b). The front faces show the images at zero offset and
are the same in the two cubes. The side face of Figure 4a shows
the HOCIGs taken at the horizontal location corresponding to
the vertical salt edge. We immediately notice that, at the depth

interval corresponding to the salt edge, the image is smeared
along the offset axis, which is consistent with the horizontal-
offset stretch described by equation 9. On the contrary, the
image of the salt edge is well focused in the VOCIG displayed
in the top face of Figure 4b, which is consistent with the vertical-
offset stretch described by equation 10. However, the flattish
reflectors are unfocused in the VOCIG cube, whereas they are
well focused in the HOCIG cube. The stretching of the offset
axes causes useful information to be lost when significant en-
ergy is pushed outside the range of offsets actually computed.
In this example, the salt-edge reflection is clearly truncated in
the HOCIG cube displayed in Figure 4a, notwithstanding that
the image was computed for a fairly wide offset-range (800 m,
starting at −375 m and ending at 425 m).

The ADCIGs computed from either the HOCIGs or the
VOCIGS have similar problems with artifacts caused by the

Figure 4. Migrated images of North Sea data set. Orthogonal
sections cut through offset-domain CIG cubes: (a) HOCIG
cube, (b) VOCIG cube. Notice the artifacts in both cubes. The
numbers close to the black lines superimposed onto the orthog-
onal sections denote the physical coordinates of these sections:
z = 1825 m, x = 5025 m, and xh = 0 m.
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1290 Biondi and Symes

wide range of reflectors dips. Figure 5 shows the ADCIG com-
puted from the offset-domain CIGs shown in Figure 4. The
salt edge is smeared in the ADCIG computed from HOCIG
(side face of Figure 5a), whereas it is fairly well focused in
the ADCIG computed from VOCIG (top face of Figure 5b).
Conversely, the flattish reflectors are well focused in the AD-
CIG computed from HOCIG, whereas they are smeared in the
ADCIG computed from VOCIG.

The artifacts are strongly attenuated when the ADCIG
cubes shown in Figure 5 are merged according to the sim-
ple scheme discussed above, which uses the weights defined in
equations (20). Figure 6 shows the ADCIG cube resulting from
the merge. The flat moveouts for the salt edge (in the horizon-
tal slice on the top) and the sediment reflections (in the vertical
slice on the side) are now clearly visible in the merged ADCIG

Figure 5. Orthogonal sections cut through ADCIG cubes:
(a) ADCIG computed from HOCIG cube, (b) ADCIG com-
puted from VOCIG cube. Notice the artifacts in both cubes
that are related to the artifacts visible in the corresponding
offset-domain CIG cubes (Figure 4). The coordinates of these
sections z = 1825 m, x = 5025 m, and γ = 11.25◦.

cube and confirm the correctness of the migration velocity for
the events displayed in the selected ADCIG. To confirm these
conclusions we migrated the same data after scaling the slow-
ness function with a constant factor equal to 1.04. Figure 7
shows the ADCIG cubes computed from the HOCIG cube
(Figure 7a), and from the VOCIG cube (Figure 7b). When
comparing Figure 5 with Figure 7, we notice the 175-m hori-
zontal shift of the salt edge reflection toward the left, caused
by the decrease in migration velocity. However, the artifacts
related to the salt edge reflection are similar in the two fig-
ures, and they similarly obscure the moveout information. On
the contrary, the moveout information is ready to be analyzed
in the cube displayed in Figure 8, which shows the ADCIG
cube resulting from the merge of the ADCIG cubes shown in
Figure 7. In particular, both the flattish event above the salt
edge (at about 1000-m depth) and the salt edge itself show a
typical upward smile in the angle-domain gathers, indicating
that the migration velocity was too slow.

ILLUSTRATION OF CIGs KINEMATIC
PROPERTIES WITH A SYNTHETIC DATA SET

To verify the results of our geometric analysis of the kine-
matic properties of CIGs, we modeled and migrated a synthetic
data set with a wide range of dips. The reflector has circu-
lar shape with radius of 500 m. The center is at 1000-m depth
and 3560-m horizontal coordinate. The velocity is constant and
equal to 2000 m/s. The data were recorded in 630 shot records.
The first shot was located at a surface coordinate of −2000 m,
and the shots were spaced 10 m apart. The receiver array was
configured with an asymmetric split-spread geometry. The min-
imum negative offset was constant and equal to −620 m. The
maximum offset was 4400 m for all the shots, with the exception
of the first 100 shots (from −2000 to −1000 m), where the max-
imum offset was 5680 m to record all the useful reflections. To
avoid boundary artifacts at the top of the model, both sources
and receivers were buried 250-m deep. Some of the reflections
from the top of the circle were muted out before migration to

Figure 6. Orthogonal sections cut through the ADCIG cube
that was obtained by merging the cubes displayed in Figure 5 us-
ing the proposed method. Notice the lack of artifacts compared
with Figure 5. The coordinates of these sections are z = 1825 m,
x = 5025 m, and γ = 11.25◦.
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ADCIGs for Migration Velocity Analysis 1291

avoid migration artifacts caused by spurious correlations with
the first arrival of the source wavefield. The whole data set
was migrated twice: first using the correct velocity (2000 m/s),
and second after scaling the slowness function by a constant
factor ρ = 1.04 (corresponding to a velocity of 1923 m/s). The
ADCIGs shown in this section and the following section were
computed by merging the ADCIGs computed from both the
HOCIGs and VOCIGs according to the robust algorithm pre-
sented in the previous section.

Figure 9a shows the zero-offset section (stack) of the mi-
grated cubes with the correct velocity; Figure 9b shows the
zero-offset section obtained with the low velocity. Notice that,
despite the large distance between the first shot and the left
edge of the circle (about 5000 m), normal incidence reflections

Figure 7. Migrated images of North Sea data set. The migration
slowness had been scaled by 1.04 with respect to the migration
slowness used for the images shown in Figures 4–6. Orthogonal
sections cut through ADCIG cubes: (a) ADCIG computed
from HOCIG cube, (b) ADCIG computed from VOCIG cube.
Notice that the artifacts obscure the moveout information in
both cubes. The coordinates of these sections are z = 1875 m,
x = 4850 m, and γ = 11.25◦.

illuminate the target only up to about 70◦. As we see in the
angle-domain CIGs, the aperture angle coverage shrinks dra-
matically with increasing reflector dip. On the other hand, real
data cases are likely to have a vertical velocity gradient that
improves the angle coverage of steeply dipping reflectors.

Transformation of HOCIGs and VOCIGs to GOCIGs

Figure 10 illustrates the differences between HOCIGs and
VOCIGs caused by the image-point shift, and it demonstrates
that the image-point shift is corrected by the transformation to
GOCIGs described in equations 9 and 10.

Figures 10a and 10b show orthogonal sections cut through
the offset-domain image cubes in the case of the low-velocity
migration. Figure 10a displays the horizontal-offset image
cube, whereas Figure 10b displays the vertical-offset image
cube. Notice that the offset axis in Figure 10b has been reversed
to facilitate its visual correlation with the image cube displayed
in Figure 10a. The side faces of the cubes display the CIGs
taken at the surface location corresponding to the apparent
geological dip of 45◦. The events in the two types of CIGs have
similar shapes, as expected from the geometric analysis pre-
sented in a previous section (cos α = sin α when α = 45◦), but
their extents are different. The differences between the two im-
age cubes are more apparent when comparing the front faces,
which show the image at a constant offset of 110 m (−110 m
in Figure 10b). These differences are due to the differences in
image-point shift for the two offset directions (equations 11
and 12).

Figure 10c and 10d show the image cubes of Figures 10a and
10b after the application of the transformations to GOCIG,
described in equations 9 and 10, respectively. The two trans-
formed cubes are more similar to each other than the cubes
in Figures 10a and 10b are, because both the offset stretching
and the image-point shift have been removed. The only signif-
icant differences are visible in the front face for the reflections

Figure 8. Orthogonal sections cut through the ADCIG cube
that was obtained by merging the cubes displayed in Figure 7
using the proposed method. Notice the typical upward smile in
the moveouts from both the salt edge and the flattish event
above it. The coordinates of these sections are z = 1875 m,
x = 4850 m, and γ = 11.25◦.
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1292 Biondi and Symes

corresponding to the top of the circle. These reflections can-
not be fully captured within the vertical-offset image cube be-
cause the expression in equation 10 diverges as α goes to zero.
Similarly, reflections from steeply dipping events are missing
from the horizontal-offset image cube because the expression
in equation 9 diverges as α goes to 90◦.

Image mispositioning in ADCIGs migrated
with wrong velocity

In a previous section, we demonstrated that in an ADCIG
cube the imaging point Iγ lies on the line normal to the ap-
parent geological dip and passing through the point where the
source and receiver rays cross (Figure 3). This geometric prop-
erty enabled us to define the analytical relationship between
reflector movement and traveltime perturbation expressed in
equation 15. This important result is verified by the numerical
experiment shown in Figure 11. This figure compares the im-
ages of the circular reflector obtained using the low velocity
(slowness scaled by ρ = 1.04) with the reflector position com-
puted analytically under the assumption that Iγ is indeed the
image point in an ADCIG. Because both the true and the mi-
gration velocity functions are constant, the migrated reflector
location can be computed exactly by a simple “kinematic mi-

Figure 9. Images of the synthetic data set ob-
tained with (a) correct velocity, (b) too low ve-
locity (ρ = 1.04).

Figure 10. Orthogonal sections cut through
offset-domain CIG cubes obtained with too
low velocity (ρ = 1.04): (a) HOCIG cube,
(b) VOCIG cube, (c) GOCIG cube computed
from HOCIG cube, (d) GOCIG cube computed
from VOCIG cube. Notice the differences be-
tween the HOCIG (a) and the VOCIG (b)
cubes, and the similarities between the GOCIG
cubes (c and d). The coordinates of these sec-
tions are z = 850 m, x = 3110 m, and xh = 100 m.

gration” of the recorded events. This process takes into account
the difference in propagation directions between the “true”
events and the “migrated” events caused by the scaling of the
velocity function. Appendix C derives the equations used to
compute the migrated reflector location as a function of ρ, αρ ,
and γρ .

The images shown in the six panels in Figure 11 correspond to
six different apparent aperture angles: (a) γρ = 0◦, (b) γρ = 10◦,
(c) γρ = 20◦, (d) γρ = 30◦, (e) γρ = 40◦, (f) γρ = 50◦. The black
lines superimposed onto the images are the corresponding re-
flector locations predicted by the relationships derived in Ap-
pendix C. The analytical lines perfectly track the migrated im-
ages for all values of γρ . The lines terminate when the cor-
responding event was not recorded by the data acquisition
geometry (described above). The images extend beyond the
termination of the analytical lines because the truncation arti-
facts are affected by the finite-frequency nature of the seismic
signal, and thus they are not predicted by the simple kinematic
modeling described in Appendix C.

RESIDUAL MOVEOUT IN ADCIGs

The inconsistencies between the migrated images at differ-
ent aperture angles are the primary source of information for
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ADCIGs for Migration Velocity Analysis 1293

velocity updating during MVA. Figure 11 demonstrates how
the reflector mispositioning caused by velocity errors can be
exactly predicted by a kinematic migration that assumes the
image point to lie on the normal to the apparent geological
dip. However, this exact prediction is based on the knowledge
of the true velocity model. Of course, this condition is not re-
alistic when we are actually trying to estimate the true velocity
model by MVA. In these cases, we first measure the incon-
sistencies between the migrated images at different aperture
angles, and then we “invert” these measures into perturbations
of the velocity model.

An effective and robust method for measuring inconsisten-
cies between images is to compute semblance scans as a func-
tion of one RMO parameter, and then pick the maxima of
the semblance scan. This procedure is most effective when the
residual moveout function used for computing the semblance
scans closely approximates the true moveouts in the images.
In this section, we use the kinematic properties that we de-
rived and illustrated in the previous sections to derive two
alternative RMO functions for scanning ADCIGs computed
from wavefield-continuation migration.

As discussed above, the exact relationships derived in Ap-
pendix C cannot be used because the true velocity function is
not known. Thus, we cannot realistically estimate the changes
in ray-propagation directions caused by velocity perturbations.
However, we can linearize the relations and estimate the re-
flector movement by assuming that the raypaths are stationary.
This assumption is consistent with the typical use of measured
RMO functions by MVA procedures. For example, in a tomo-
graphic MVA procedure, the velocity is updated by applying
a tomographic scheme that “back projects” the image incon-
sistencies along unperturbed raypaths. Furthermore, the con-
sequences of the errors introduced by neglecting ray bending
are significantly reduced by the fact that RMO functions de-
scribe the movements of the reflectors relative to the reflector
position imaged at normal incidence (γ = 0), not the absolute
movements of the reflectors with respect to the true (unknown)
reflector position.

Figure 11. Comparison of the actual im-
ages obtained using the low velocity, with
the reflector position computed analyti-
cally under the assumption that the im-
age point lies on the normal to the ap-
parent geological dip (Iγ in Figure 3).
The black lines superimposed onto the
images are the reflector locations pre-
dicted by the relationships presented in
Appendix C. The six panels correspond
to six different apparent aperture an-
gles: (a) γρ = 0◦, (b) γρ = 10◦, (c) γρ = 20◦,
(d) γρ = 30◦, (e) γρ = 40◦, (f) γρ = 50◦.

Appendix D derives two expressions for the RMO shift along
the normal to the reflector (�nRMO), under the assumptions of
stationary raypaths and constant scaling of the slowness func-
tion by a factor ρ. The first expression is (equation D-7)

�nRMO = ρ − 1
cos α

sin2 γ

(cos2 α − sin2 γ )
z0n, (21)

where z0 is the depth at normal incidence.
The second RMO function is directly derived from the first

by assuming flat reflectors (α = 0) (equation D-8):

�nRMO = (ρ − 1) tan2 γ z0n. (22)

Albertin et al. (1998) used a similar relationship describing the
dependency of RMO with the tangent squared of the opening
angle for common-offset Kirchhoff migration.

As expected, in both expressions the RMO shift is null at
normal incidence (γ = 0) and when the migration slowness is
equal to the true slowness (ρ = 1). According to the first expres-
sion (equation 21), the RMO shift increases as a function of the
apparent geological dip |α|. The intuitive explanation for this
behavior is that the specular rays become longer as the appar-
ent geological dip increases, and consequently the effects of the
slowness scaling increase. The first expression is more accurate
than the second one when the spatial extent of the velocity per-
turbations is large compared to the raypath length and, conse-
quently, the velocity perturbations are uniformly felt along the
entire raypaths. Its use might be advantageous at the beginning
of the MVA process when slowness errors are typically large
scale. However, it has the disadvantage of depending on the re-
flector dip α; thus, its application is somewhat more complex.

The second expression is simpler and is not as dependent on
the assumption of large-scale velocity perturbations as the first
one. Its use might be advantageous for estimating small-scale
velocity anomalies at a later stage of the MVA process, when
the gross features of the slowness function have been already
determined.
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1294 Biondi and Symes

The dependency of the RMO function on the geological dip
α also highlights the fact that RMO analysis implicitly assumes
the existence of coherent reflectors with slowly varying geologi-
cal dip. When this assumption is not fulfilled, the measurements
of RMO from migration results can be misleading.

To test the accuracy of the two RMO functions, we use the
migration results of a synthetic data set acquired over a circular
reflector. This data set was described in the previous section.
Figure 12 illustrates the accuracy of the two RMO functions
when predicting the actual RMO in the migrated images ob-
tained with a constant slowness function with ρ = 1.04. The four
panels show the ADCIGs corresponding to different apparent
reflector dip: (a) α = 0◦, (b) α = 30◦, (c) α = 45◦, (d) α = 60◦.
Notice that the vertical axes change across the panels; in each
panel, the vertical axis is oriented along the direction normal
to the respective apparent geological dip. The solid lines su-
perimposed onto the images are computed using equation 21,
whereas the dashed lines are computed using equation 22. As
in Figure 11, the images extend beyond the termination of the
analytical lines because of the finite-frequency nature of the
truncation artifacts.

The migrated images displayed in Figure 12 were computed
by setting both the true and the migration slowness function to
be constant. Therefore, this case favors the first RMO function
(equation 21) because it nearly meets the conditions under
which equation 21 is derived in Appendix D. Consequently, the
solid lines overlap the migration results for all dip angles. This
figure demonstrates that, when the slowness perturbation is
sufficiently small (4% in this case), the assumption of stationary
raypaths causes only small errors in the predicted RMO.

In contrast, the dashed lines predicted by the second RMO
function (equation 22) are an acceptable approximation of the
actual RMO function only for small dip angles (up to 30◦). For

Figure 12. ADCIGs for four different
apparent reflector dips: (a) α = 0◦, (b)
α = 30◦, (c) α = 45◦, (d) α = 60◦, with
ρ = 1.04. Superimposed onto the images
are the RMO functions computed using
equation 21 (solid lines) and using equa-
tion 22 (dashed lines). Notice that the
vertical axes change across the panels; in
each panel, the vertical axis is oriented
along the direction normal to the respec-
tive apparent geological dip.

large dip angles, a value of ρ substantially higher than the cor-
rect one would be necessary to fit the actual RMO function
with equation 22. If this effect of the reflector dip is not prop-
erly taken into account, the false indications provided by the
inappropriate use of equation 22 can prevent the MVA process
from converging.

CONCLUSIONS

We analyze the kinematic properties of ADCIGs in the pres-
ence of velocity errors. We prove that in the angle domain the
image point lies along the normal to the apparent reflector dip.
This geometric property of ADCIGs makes them immune to
the image-point dispersal and thus attractive for MVA.

We derive a quantitative relationship between image-point
movements and traveltime perturbations caused by velocity er-
rors, and verify its validity with a synthetic-data example. This
relationship should be at the basis of velocity-updating meth-
ods that exploit the velocity information contained in ADCIGs.

Our analysis leads to the definition of two RMO functions
that can be used to measure inconsistencies between migrated
images at different aperture angles. The RMO functions de-
scribe the relative movements of the imaged reflectors only
approximately because they are derived assuming stationary
raypaths. However, a synthetic example shows that, when the
velocity perturbation is sufficiently small, one of the proposed
RMO functions is accurate for a wide range of reflector dips
and aperture angles.

The insights gained from our kinematic analysis explain the
strong artifacts that affect conventional ADCIGs in presence
of steeply dipping reflectors. They also suggest a procedure
for overcoming the problem: the computation of VOCIGs
followed by the combination of VOCIGs with conventional
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ADCIGs for Migration Velocity Analysis 1295

HOCIGs. We propose a simple and robust scheme for combin-
ing HOCIGs and VOCIGs. A North Sea data example clearly
illustrates both the need for and the advantages of our method
for computing ADCIGs in presence of a vertical salt edge.
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APPENDIX A

PROOF THAT THE TRANSFORMATION
TO GOCIG CORRECTS FOR THE

IMAGE-POINT SHIFT

This appendix proves that by applying the offset transforma-
tions described in equations 9 and 10 we automatically remove
the image-point shift characterized by equations 11 and 12. The
demonstration for the VOCIG transformation is similar to the
one for the HOCIG transformation, and thus we present only
the demonstration for the HOCIGs. HOCIGs are transformed
into GOCIGs by applying the following change of variables of
the offset axis xh in the vertical wavenumber kz and horizontal
wavenumber kx domain:

xh = h̃0

cos α
= sign(tan α) h̃0

√
1 + tan2 α

= sign
(

kx

kz

)
h̃0

(
1 + k2

x

k2
z

) 1
2

. (A-1)

For the sake of simplicity, in the rest of the appendix we will
drop the sign in front of expression A-1 and consider only the
positive values of kx/kz .

We want to prove that by applying expression A-1 we also
automatically shift the image by

�Ixh · z = h̃0 tan γ tan α sin α (A-2)

in the vertical direction and

�Ixh · x = h̃0 tan γ tan α cos α (A-3)

in the horizontal direction.
The demonstration is carried out into two steps: (1) we com-

pute the kinematics of the impulse response of transformation
A-1 by a stationary-phase approximation of the inverse Fourier
transform along kz and kx , and (2) we evaluate the dips of the

impulse response, relate them to the angles α and γ , and then
demonstrate that relations A-3 and A-2 are satisfied.

Evaluation of the impulse response of the
transformation to GOCIGs

The transformation to GOCIG of an image Ixh (kz, kx , xh) is
defined as

I0(kz, kx , xh) =
∫

dh̃0 I0(kz, kx , h̃0)eikh h̃0

=
∫

dxh

(
dh̃0

dxh

)
Ixh (kz, kx , xh)e

ikh xh

(
1+ k2

x
k2
z

) 1
2

.

(A-4)

The transformation to GOCIG of an impulse located at
(z̄, x̄, x̄h) is thus (after inverse Fourier transforms)

Ĩmp(z, x, h̃0) =
∫

dkh

∫
dxh

∫
dkx

∫
dkz

(
dh̃0

dxh

)

× e
i

kh

x̄h

(
1+ k2

x
k2
z

)− 1
2 −h̃0

+kz(z̄−z)+kx (x̄−x)


. (A-5)

We now approximate by stationary phase the inner double
integral. The phase of this integral is

� ≡ kh

x̄h

(
1 + k2

x

k2
z

)− 1
2

− h̃0

+ kz (z̄ − z)+ kx (x̄ − x) .

(A-6)
The stationary path is defined by the solutions of the following
system of equations:

∂�

∂kz
= kh x̄h

k2
x

k3
z

(
1 + k2

x

k2
z

)− 3
2

+ (z̄ − z) = 0, (A-7)

∂�

∂kx
= −kh x̄h

kx

k2
z

(
1 + k2

x

k2
z

)− 3
2

+ (x̄ − x) = 0, (A-8)

By moving both (z̄ − z) and (x̄ − x) to the right of equa-
tions A-7 and A-8, and then dividing equation A-7 by equa-
tion A-8, we obtain the following relationship between (z̄ − z)
and (x̄ − x):

z̄ − z

x̄ − x
= −kx

kz
. (A-9)

Furthermore, by multiplying equation A-7 by kz and equa-
tion A-8 by kx , and then substituting them appropriately in the
phase function A-6, we can evaluate the phase function along
the stationary path as follows:

�stat = kh

x̄h

(
1 + k2

x

k2
z

)− 1
2

− h̃0

 , (A-10)

which becomes, by substituting equation A-9,

�stat = kh

x̄h

[
1 + (z̄ − z)2

(x̄ − x)2

]− 1
2

− h̃0

 . (A-11)
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1296 Biondi and Symes

By substituting expression A-11 in equation A-5, we can eval-
uate the kinematics of the impulse response as follows:

h̃0 = xh

[
1 + (z̄ − z)2

(x̄ − x)2

]− 1
2

. (A-12)

Evaluation of the image shift as a function of α ad γ

The final step is to take the derivative of the impulse response
of equation A-12 and use the relationships of these derivatives
with tan α and tan γ :

∂z

∂x
= tan α = −

√
x2

h

h̃0
2

− 1, (A-13)

− ∂z

∂xh
= tan γ = −(x̄ − x)

xh

h̃0√
x2

h

h̃0
2

− 1

= −(z̄ − z)

xh

h̃0

x2
h

h̃0
2

− 1

.

(A-14)

By substituting equations A-13 and A-14 into

�Ixh · z = z̄ − z = h̃0 tan γ tan α sin α, (A-15)

�Ixh · x = x̄ − x = h̃0 tan γ tan α cos α, (A-16)

and after some algebraic manipulation, we prove the thesis.

APPENDIX B

RELATIONSHIP BETWEEN WAVENUMBERS
AND GEOLOGICAL DIPS

This appendix demonstrates equations 19 in the main text:
that for energy dipping at an angle α in the (z, x) plane, the
wavenumber kn along the normal to the dip is linked to the
wavenumbers kz and kx by

kn = − kz

cos α
= kx

sin α
. (B-1)

For energy dipping at an angle α, the wavenumbers satisfy the
well-known relationship

tan α = −kx

kz
, (B-2)

where the negative sign is determined by the conventions de-
fined in Figure 1. The wavenumber kn is related to kx and kz by
the axes rotation

kn = −kz cos α + kx sin α. (B-3)

Substituting equation B-2 into equation B-3, we obtain

kn = kz

cos α
(− cos2 α − tan α cos α sin α)

= − kz

cos α
(cos2 α + sin2 α) = − kz

cos α
, (B-4)

or

kn = kx

sin α
(cot α sin α cos α + sin2 α)

= kx

sin α
(cos2 α + sin2 α) = kx

sin α
. (B-5)

APPENDIX C

KINEMATIC MIGRATION OF REFLECTIONS
FROM A CIRCLE

In this appendix, we derive the equations for the “kinematic
migration” of the reflections from a sphere as a function of the
ratio ρ between the true constant slowness S and the migration
slowness Sρ = ρS. For a given ρ, we want to find the coordinates
(zγ , xγ ) of the imaging point Iγ as a function of the apparent
geological dip αρ and the apparent aperture angle γρ . Central
to our derivation is the assumption that the imaging point Iγ

lies on the normal to the apparent reflector dip passing through
Ī, as represented in Figure 3.

The first step is to establish the relationships between the
true α and γ and the apparent αρ and γρ . This can be done
through the relationships between the propagation directions
of the source/receiver rays (respectively marked as the angles
βs and βr in Figure 1) and the event time dips, which are inde-
pendent on the migration slowness. The true βs and βr can be
thus estimated as

βs = arcsin(ρ sin βsρ) = arcsin[ρ sin(αρ − γρ)], (C-1)

βr = arcsin(ρ sin βr ρ) = arcsin[ρ sin(αρ + γρ)]. (C-2)

Then, the true α and γ are

α = βs + βr

2
and γ = βr − βs

2
. (C-3)

Next step is to take advantage of the fact that the reflector
is a sphere and, thus, that the coordinates (ẑ, x̂) of the true
reflection point are uniquely identified by the dip angle α:

ẑ = (zc − R cos α) and x̂ = (xc + R sin α), (C-4)

where (zc, xc) are the coordinates of the center of the sphere
and R is its radius.

The midpoint, offset, and traveltime of the event can be
found by applying simple trigonometry (see Sava and Fomel
2003) as follows:

xh surf = sin γ cos γ

cos2 α − sin2 γ
ẑ, (C-5)

xm surf = x̂ + sin α cos α

cos2 α − sin2 γ
ẑ, (C-6)

tD = 2S
cos α cos γ

cos2 α − sin2 γ
ẑ. (C-7)

The coordinates (z̄, x̄), of the point Ī, where the source and
the receiver rays cross, are

z̄ = xh surf
cos2αρ − sin2 γρ

sin γρ cos γρ

, (C-8)

x̄ = xm surf − sin αρ cos αρ

cos2 αρ − sin2 γρ

z̄

= xm surf − sin αρ cos αρ

cos2 αρ − sin2 γρ

cos2 αρ − sin2 γρ

sin γρ cos γρ

xh surf

= xm surf − sin αρ cos αρ

sin γρ cos γρ

xh surf, (C-9)
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ADCIGs for Migration Velocity Analysis 1297

and the corresponding traveltime tDρ is

tDρ = 2ρS
cos αρ cos γρ

cos2 αρ − sin2 γρ

z̄. (C-10)

Once we have the traveltimes tD and tDρ , the normal shift
�ntot can be easily evaluated by applying equation 15 (where
the background velocity is Sρ and the aperture angle is γρ),
which yields

�ntot =
(
tDρ − tD

)
2ρS cos γρ

n. (C-11)

We used equation C-11, together with equations C-8 and C-9, to
compute the lines superimposed onto the images in Figure 11.

APPENDIX D

RESIDUAL MOVEOUT IN ANGLE-DOMAIN
COMMON IMAGE GATHERS

In this appendix, we derive the expression for the RMO
function to be applied to ADCIGs computed by wavefield con-
tinuation. The derivation follows the derivation presented in
Appendix C. The main difference is that in this appendix we
assume the rays to be stationary. In other words, we assume
that the apparent dip angle αρ and aperture angle γρ are the
same as the true angles α and γ . This assumption also implies
that the (unknown) true reflector coordinates (ẑ, x̂) coincide
with the coordinates (z̄, x̄) of the point Ī where the source and
the receiver ray cross.

Given these assumptions, the total traveltime through the
perturbed slowness function Sρ is given by

tDρ = 2ρS
cos α cos γ

cos2 α − sin2 γ
z̄, (D-1)

which is different from the corresponding equation in Ap-
pendix C (equation C-10). The difference in traveltimes (tDρ −
tD), where tD is given by equation equation C-7, is thus a linear
function of the difference in slownesses [(ρ − 1)S]; that is,

tDρ − tD = 2 (ρ − 1) S
cos α cos γ

cos2 α − sin2 γ
z̄. (D-2)

As in Appendix C, the normal shift �ntot can be evaluated
by applying equation 15 (where the background velocity is Sρ

and the aperture angle is γ ), which yields

�ntot = ρ − 1
ρ

cos α

cos2 α − sin2 γ
z̄n. (D-3)

The RMO function (�nRMO) describes the relative movement
of the image point at any γ with respect to the image point
for the normal-incidence event (γ = 0). From equation D-3, it
follows that the RMO function is

�nRMO = �ntot(γ ) − �ntot(γ = 0)

= ρ − 1
ρ

[
cos α

cos2 α − sin2 γ
− 1

cos α

]
z̄n

= ρ − 1
ρ

sin2 γ

(cos2 α − sin2 γ ) cos α
z̄n. (D-4)

The true depth z̄ is not known, but at normal incidence it can be
estimated as a function of the migrated depth z0 by inverting the

following relationship (derived from equation D-3 with γ = 0):

z0 = z̄

ρ
, (D-5)

as

z̄ = ρz0. (D-6)

Substituting relation D-6 in equation D-4, we obtain

�nRMO = ρ − 1
cos α

sin2 γ

(cos2 α − sin2 γ )
z0n, (D-7)

which for flat reflectors (α = 0) simplifies to

�nRMO = (ρ − 1) tan2 γ z0n. (D-8)

In Figure 12, the solid lines superimposed into the images
are computed using equation D-7, whereas the dashed lines
are computed using equation D-8.
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